Files
adler32
aho_corasick
alga
approx
ascii
atty
backtrace
backtrace_sys
base64
bitflags
blas_src
block_buffer
block_padding
brotli2
brotli_sys
buf_redux
byte_tools
byteorder
cauchy
cblas_sys
cfg_if
chrono
chunked_transfer
colored
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
ctrlc
deflate
digest
dirs
error_chain
filetime
futures
generic_array
getrandom
gzip_header
hex
httparse
hyper
idna
itoa
language_tags
lapack_src
lapacke
lapacke_sys
lazy_static
libc
libm
linked_hash_map
log
matches
matrixmultiply
maybe_uninit
md5
memchr
memoffset
mime
mime_guess
multipart
nalgebra
base
geometry
linalg
ndarray
ndarray_linalg
net2
netlib_src
nix
num_complex
num_cpus
num_integer
num_rational
num_traits
opaque_debug
percent_encoding
phf
phf_shared
ppv_lite86
proc_macro2
quick_error
quote
rand
rand_chacha
rand_core
rand_distr
rawpointer
regex
regex_syntax
remove_dir_all
rosrust
rosrust_codegen
rosrust_msg
rouille
rustc_demangle
rustros_tf
ryu
safemem
scopeguard
serde
serde_bytes
serde_derive
serde_json
serde_xml_rs
sha1
siphasher
smallvec
syn
tempdir
term
thread_local
threadpool
time
tiny_http
traitobject
twoway
typeable
typenum
ucd_util
unicase
unicode_bidi
unicode_normalization
unicode_xid
url
utf8_ranges
void
xml
xml_rpc
yaml_rust
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
// Copyright 2013-2014 The Algebra Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Fundamental algebraic structures.
//!
//! For most applications requiring an abstraction over the reals, `RealField`
//! should be sufficient.
//!
//! ## Algebraic properties
//!
//! The goal of algebraic structures is to allow elements of sets to be combined together using one
//! or several operators. The number and properties of those operators characterize the algebraic
//! structure. Abstract operators are usually noted `∘`, `+`, or `×`. The last two are preferred
//! when their behavior conform with the usual meaning of addition and multiplication of reals.
//! Let `Self` be a set. Here is a list of the most common properties those operator may fulfill:
//!
//! ~~~notrust
//! (Closure)       a, b ∈ Self ⇒ a ∘ b ∈ Self,
//! (Divisibility)  ∀ a, b ∈ Self, ∃! r, l ∈ Self such that l ∘ a = b and a ∘ r = b
//! (Invertibility) ∃ e ∈ Self, ∀ a ∈ Self, ∃ r, l ∈ Self such that l ∘ a = a ∘ r = e
//!                 If the right and left inverse are equal they are usually noted r = l = a⁻¹.
//! (Associativity) ∀ a, b, c ∈ Self, (a ∘ b) ∘ c = a ∘ (b ∘ c)
//! (Neutral Elt.)  ∃ e ∈ Self, ∀ a ∈ Self, e ∘ a = a ∘ e = a
//! (Commutativity) ∀ a, b ∈ Self, a ∘ b = b ∘ a
//! ~~~
//!
//! ## Identity elements
//!
//! Two traits are provided that allow the definition of the additive and
//! multiplicative identity elements:
//!
//! - `IdentityAdditive`
//! - `IdentityMultiplicative`
//!
//! ## AbstractGroup-like structures
//!
//! These structures are provided for both the addition and multiplication.
//!
//! These can be derived automatically by `alga_traits` attribute from `alga_derive` crate.
//!
//! ~~~notrust
//!            AbstractMagma
//!                 |
//!         _______/ \______
//!        /                \
//!  divisibility       associativity
//!       |                  |
//!       V                  V
//! AbstractQuasigroup AbstractSemigroup
//!       |                  |
//!   identity            identity
//!       |                  |
//!       V                  V
//!  AbstractLoop       AbstractMonoid
//!       |                  |
//!  associativity     invertibility
//!        \______   _______/
//!               \ /
//!                |
//!                V
//!          AbstractGroup
//!                |
//!          commutativity
//!                |
//!                V
//!      AbstractGroupAbelian
//! ~~~
//!
//! The following traits are provided:
//!
//! - (`Abstract`|`Additive`|`Multiplicative`)`Magma`
//! - (`Abstract`|`Additive`|`Multiplicative`)`Quasigroup`
//! - (`Abstract`|`Additive`|`Multiplicative`)`Loop`
//! - (`Abstract`|`Additive`|`Multiplicative`)`Semigroup`
//! - (`Abstract`|`Additive`|`Multiplicative`)`Monoid`
//! - (`Abstract`|`Additive`|`Multiplicative`)`Group`
//! - (`Abstract`|`Additive`|`Multiplicative`)`GroupAbelian`
//!
//! ## Ring-like structures
//!
//! These can be derived automatically by `alga_traits` attribute from `alga_derive` crate.
//!
//! ~~~notrust
//!      GroupAbelian           Monoid
//!           \________   ________/
//!                    \ /
//!                     |
//!                     V
//!                    Ring
//!                     |
//!            commutativity_of_mul
//!                     |
//!                     V
//!              RingCommutative           GroupAbelian
//!                      \_______   ___________/
//!                              \ /
//!                               |
//!                               V
//!                             Field
//! ~~~
//!
//! The following traits are provided:
//!
//! - `Ring`
//! - `RingCommutative`
//! - `Field`
//!
//! ## Module-like structures
//!
//! ~~~notrust
//!     GroupAbelian         RingCommutative
//!           \______         _____/
//!                  \       /
//!                   |     |
//!                   V     V
//!                Module<Scalar>          Field
//!                    \______         _____/
//!                           \       /
//!                            |     |
//!                            V     V
//!                      VectorSpace<Scalar>
//! ~~~
//!
//! The following traits are provided:
//!
//! - `Module`
//! - `VectorSpace`
//!
//! # Quickcheck properties
//!
//! Functions are provided to test that algebraic properties like
//! associativity and commutativity hold for a given set of arguments.
//!
//! These tests can be automatically derived by `alga_quickcheck` attribute from `alga_derive` crate.
//!
//! For example:
//!
//! ~~~.ignore
//! use algebra::general::SemigroupMultiplicative;
//!
//! quickcheck! {
//!     fn prop_mul_is_associative(args: (i32, i32, i32)) -> bool {
//!         SemigroupMultiplicative::prop_mul_is_associative(args)
//!     }
//! }
//! ~~~

pub use self::identity::{Id, Identity};
pub use self::operator::{
    Additive, ClosedAdd, ClosedDiv, ClosedMul, ClosedNeg, ClosedSub, Multiplicative, Operator,
    TwoSidedInverse,
};
pub use self::subset::{SubsetOf, SupersetOf};

pub use self::complex::ComplexField;
pub use self::lattice::{JoinSemilattice, Lattice, MeetSemilattice};
pub use self::module::AbstractModule;
pub use self::one_operator::{
    AbstractGroup, AbstractGroupAbelian, AbstractLoop, AbstractMagma, AbstractMonoid,
    AbstractQuasigroup, AbstractSemigroup,
};
pub use self::real::RealField;
pub use self::specialized::{
    AdditiveGroup, AdditiveGroupAbelian, AdditiveLoop, AdditiveMagma, AdditiveMonoid,
    AdditiveQuasigroup, AdditiveSemigroup, Field, Module, MultiplicativeGroup,
    MultiplicativeGroupAbelian, MultiplicativeLoop, MultiplicativeMagma, MultiplicativeMonoid,
    MultiplicativeQuasigroup, MultiplicativeSemigroup, Ring, RingCommutative,
};
pub use self::two_operators::{AbstractField, AbstractRing, AbstractRingCommutative};

#[macro_use]
mod one_operator;
mod complex;
mod identity;
mod lattice;
mod module;
mod operator;
mod real;
mod specialized;
mod subset;
mod two_operators;
#[doc(hidden)]
pub mod wrapper;

#[deprecated(note = "This has been renamed `RealField`.")]
/// The field of reals. This has been renamed to `RealField`.
pub trait Real: RealField {}

impl<T: RealField> Real for T {}