Files
adler32
aho_corasick
alga
approx
ascii
atty
backtrace
backtrace_sys
base64
bitflags
blas_src
block_buffer
block_padding
brotli2
brotli_sys
buf_redux
byte_tools
byteorder
cauchy
cblas_sys
cfg_if
chrono
chunked_transfer
colored
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
ctrlc
deflate
digest
dirs
error_chain
filetime
futures
generic_array
getrandom
gzip_header
hex
httparse
hyper
idna
itoa
language_tags
lapack_src
lapacke
lapacke_sys
lazy_static
libc
libm
linked_hash_map
log
matches
matrixmultiply
maybe_uninit
md5
memchr
memoffset
mime
mime_guess
multipart
nalgebra
base
geometry
linalg
ndarray
ndarray_linalg
net2
netlib_src
nix
num_complex
num_cpus
num_integer
num_rational
num_traits
opaque_debug
percent_encoding
phf
phf_shared
ppv_lite86
proc_macro2
quick_error
quote
rand
rand_chacha
rand_core
rand_distr
rawpointer
regex
regex_syntax
remove_dir_all
rosrust
rosrust_codegen
rosrust_msg
rouille
rustc_demangle
rustros_tf
ryu
safemem
scopeguard
serde
serde_bytes
serde_derive
serde_json
serde_xml_rs
sha1
siphasher
smallvec
syn
tempdir
term
thread_local
threadpool
time
tiny_http
traitobject
twoway
typeable
typenum
ucd_util
unicase
unicode_bidi
unicode_normalization
unicode_xid
url
utf8_ranges
void
xml
xml_rpc
yaml_rust
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
use crate::general::{
    AbstractGroupAbelian, AbstractRingCommutative, Additive, Multiplicative, Operator,
};

/// A module combines two sets: one with an Abelian group structure and another with a
/// commutative ring structure.
///
/// `OpGroup` denotes the Abelian group operator (usually the addition). In addition, and external
/// multiplicative law noted `∘` is defined. Let `S` be the ring with multiplicative operator
/// `OpMul` noted `×`, multiplicative identity element noted `1`, and additive operator `OpAdd`.
/// Then:
///
/// ```notrust
/// ∀ a, b ∈ S
/// ∀ x, y ∈ Self
///
/// a ∘ (x + y) = (a ∘ x) + (a ∘ y)
/// (a + b) ∘ x = (a ∘ x) + (b ∘ x)
/// (a × b) ∘ x = a ∘ (b ∘ x)
/// 1 ∘ x       = x
/// ```
pub trait AbstractModule<
    OpGroup: Operator = Additive,
    OpAdd: Operator = Additive,
    OpMul: Operator = Multiplicative,
>: AbstractGroupAbelian<OpGroup>
{
    /// The underlying scalar field.
    type AbstractRing: AbstractRingCommutative<OpAdd, OpMul>;

    /// Multiplies an element of the ring with an element of the module.
    fn multiply_by(&self, r: Self::AbstractRing) -> Self;
}

impl<
        N: AbstractRingCommutative<Additive, Multiplicative> + num::Num + crate::general::ClosedNeg,
    > AbstractModule<Additive, Additive, Multiplicative> for num_complex::Complex<N>
{
    type AbstractRing = N;

    #[inline]
    fn multiply_by(&self, r: N) -> Self {
        self.clone() * r
    }
}

macro_rules! impl_abstract_module(
    ($($T:ty),*) => {
        $(impl AbstractModule for $T {
            type AbstractRing = $T;

            #[inline]
            fn multiply_by(&self, r: $T) -> Self {
                self.clone() * r
            }
        })*
    }
);

impl_abstract_module!(i8, i16, i32, i64, isize, f32, f64);