Files
adler32
aho_corasick
alga
approx
ascii
atty
backtrace
backtrace_sys
base64
bitflags
blas_src
block_buffer
block_padding
brotli2
brotli_sys
buf_redux
byte_tools
byteorder
cauchy
cblas_sys
cfg_if
chrono
chunked_transfer
colored
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
ctrlc
deflate
digest
dirs
error_chain
filetime
futures
generic_array
getrandom
gzip_header
hex
httparse
hyper
idna
itoa
language_tags
lapack_src
lapacke
lapacke_sys
lazy_static
libc
libm
linked_hash_map
log
matches
matrixmultiply
maybe_uninit
md5
memchr
memoffset
mime
mime_guess
multipart
nalgebra
base
geometry
linalg
ndarray
ndarray_linalg
net2
netlib_src
nix
num_complex
num_cpus
num_integer
num_rational
num_traits
opaque_debug
percent_encoding
phf
phf_shared
ppv_lite86
proc_macro2
quick_error
quote
rand
rand_chacha
rand_core
rand_distr
rawpointer
regex
regex_syntax
remove_dir_all
rosrust
rosrust_codegen
rosrust_msg
rouille
rustc_demangle
rustros_tf
ryu
safemem
scopeguard
serde
serde_bytes
serde_derive
serde_json
serde_xml_rs
sha1
siphasher
smallvec
syn
tempdir
term
thread_local
threadpool
time
tiny_http
traitobject
twoway
typeable
typenum
ucd_util
unicase
unicode_bidi
unicode_normalization
unicode_xid
url
utf8_ranges
void
xml
xml_rpc
yaml_rust
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#![no_std]
pub extern crate byteorder;
pub extern crate block_padding;
pub extern crate generic_array;
extern crate byte_tools;

use byteorder::{ByteOrder, BE};
use byte_tools::zero;
use block_padding::{Padding, PadError};
use generic_array::{GenericArray, ArrayLength};
use core::slice;

/// Buffer for block processing of data
#[derive(Clone, Default)]
pub struct BlockBuffer<BlockSize: ArrayLength<u8>>  {
    buffer: GenericArray<u8, BlockSize>,
    pos: usize,
}

#[inline(always)]
unsafe fn cast<N: ArrayLength<u8>>(block: &[u8]) -> &GenericArray<u8, N> {
    debug_assert_eq!(block.len(), N::to_usize());
    &*(block.as_ptr() as *const GenericArray<u8, N>)
}



impl<BlockSize: ArrayLength<u8>> BlockBuffer<BlockSize> {
    /// Process data in `input` in blocks of size `BlockSize` using function `f`.
    #[inline]
    pub fn input<F>(&mut self, mut input: &[u8], mut f: F)
        where F: FnMut(&GenericArray<u8, BlockSize>)
    {
        // If there is already data in the buffer, process it if we have
        // enough to complete the chunk.
        let rem = self.remaining();
        if self.pos != 0 && input.len() >= rem {
            let (l, r) = input.split_at(rem);
            input = r;
            self.buffer[self.pos..].copy_from_slice(l);
            self.pos = 0;
            f(&self.buffer);
        }

        // While we have at least a full buffer size chunks's worth of data,
        // process that data without copying it into the buffer
        while input.len() >= self.size() {
            let (block, r) = input.split_at(self.size());
            input = r;
            f(unsafe { cast(block) });
        }

        // Copy any remaining data into the buffer.
        self.buffer[self.pos..self.pos+input.len()].copy_from_slice(input);
        self.pos += input.len();
    }

    /*
    /// Process data in `input` in blocks of size `BlockSize` using function `f`, which accepts
    /// slice of blocks.
    #[inline]
    pub fn input2<F>(&mut self, mut input: &[u8], mut f: F)
        where F: FnMut(&[GenericArray<u8, BlockSize>])
    {
        // If there is already data in the buffer, process it if we have
        // enough to complete the chunk.
        let rem = self.remaining();
        if self.pos != 0 && input.len() >= rem {
            let (l, r) = input.split_at(rem);
            input = r;
            self.buffer[self.pos..].copy_from_slice(l);
            self.pos = 0;
            f(slice::from_ref(&self.buffer));
        }

        // While we have at least a full buffer size chunks's worth of data,
        // process it data without copying into the buffer
        let n_blocks = input.len()/self.size();
        let (left, right) = input.split_at(n_blocks*self.size());
        // safe because we guarantee that `blocks` does not point outside of `input` 
        let blocks = unsafe {
            slice::from_raw_parts(
                left.as_ptr() as *const GenericArray<u8, BlockSize>,
                n_blocks,
            )
        };
        f(blocks);

        // Copy remaining data into the buffer.
        self.buffer[self.pos..self.pos+right.len()].copy_from_slice(right);
        self.pos += right.len();
    }
    */

    /// Variant that doesn't flush the buffer until there's additional
    /// data to be processed. Suitable for tweakable block ciphers
    /// like Threefish that need to know whether a block is the *last*
    /// data block before processing it.
    #[inline]
    pub fn input_lazy<F>(&mut self, mut input: &[u8], mut f: F)
        where F: FnMut(&GenericArray<u8, BlockSize>)
    {
        let rem = self.remaining();
        if self.pos != 0 && input.len() > rem {
            let (l, r) = input.split_at(rem);
            input = r;
            self.buffer[self.pos..].copy_from_slice(l);
            self.pos = 0;
            f(&self.buffer);
        }

        while input.len() > self.size() {
            let (block, r) = input.split_at(self.size());
            input = r;
            f(unsafe { cast(block) });
        }

        self.buffer[self.pos..self.pos+input.len()].copy_from_slice(input);
        self.pos += input.len();
    }

    /// Pad buffer with `prefix` and make sure that internall buffer
    /// has at least `up_to` free bytes. All remaining bytes get
    /// zeroed-out.
    #[inline]
    fn digest_pad<F>(&mut self, up_to: usize, f: &mut F)
        where F: FnMut(&GenericArray<u8, BlockSize>)
    {
        if self.pos == self.size() {
            f(&self.buffer);
            self.pos = 0;
        }
        self.buffer[self.pos] = 0x80;
        self.pos += 1;

        zero(&mut self.buffer[self.pos..]);

        if self.remaining() < up_to {
            f(&self.buffer);
            zero(&mut self.buffer[..self.pos]);
        }
    }

    /// Pad message with 0x80, zeros and 64-bit message length
    /// in a byte order specified by `B`
    #[inline]
    pub fn len64_padding<B, F>(&mut self, data_len: u64, mut f: F)
        where B: ByteOrder, F: FnMut(&GenericArray<u8, BlockSize>)
    {
        // TODO: replace `F` with `impl Trait` on MSRV bump
        self.digest_pad(8, &mut f);
        let s = self.size();
        B::write_u64(&mut self.buffer[s-8..], data_len);
        f(&self.buffer);
        self.pos = 0;
    }


    /// Pad message with 0x80, zeros and 128-bit message length
    /// in the big-endian byte order
    #[inline]
    pub fn len128_padding_be<F>(&mut self, hi: u64, lo: u64, mut f: F)
        where F: FnMut(&GenericArray<u8, BlockSize>)
    {
        // TODO: on MSRV bump replace `F` with `impl Trait`, use `u128`, add `B`
        self.digest_pad(16, &mut f);
        let s = self.size();
        BE::write_u64(&mut self.buffer[s-16..s-8], hi);
        BE::write_u64(&mut self.buffer[s-8..], lo);
        f(&self.buffer);
        self.pos = 0;
    }

    /// Pad message with a given padding `P`
    ///
    /// Returns `PadError` if internall buffer is full, which can only happen if
    /// `input_lazy` was used.
    #[inline]
    pub fn pad_with<P: Padding>(&mut self)
        -> Result<&mut GenericArray<u8, BlockSize>, PadError>
    {
        P::pad_block(&mut self.buffer[..], self.pos)?;
        self.pos = 0;
        Ok(&mut self.buffer)
    }

    /// Return size of the internall buffer in bytes
    #[inline]
    pub fn size(&self) -> usize {
        BlockSize::to_usize()
    }

    /// Return current cursor position
    #[inline]
    pub fn position(&self) -> usize {
        self.pos
    }

    /// Return number of remaining bytes in the internall buffer
    #[inline]
    pub fn remaining(&self) -> usize {
        self.size() - self.pos
    }

    /// Reset buffer by setting cursor position to zero
    #[inline]
    pub fn reset(&mut self)  {
        self.pos = 0
    }
}