Files
adler32
aho_corasick
alga
approx
ascii
atty
backtrace
backtrace_sys
base64
bitflags
blas_src
block_buffer
block_padding
brotli2
brotli_sys
buf_redux
byte_tools
byteorder
cauchy
cblas_sys
cfg_if
chrono
chunked_transfer
colored
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
ctrlc
deflate
digest
dirs
error_chain
filetime
futures
generic_array
getrandom
gzip_header
hex
httparse
hyper
idna
itoa
language_tags
lapack_src
lapacke
lapacke_sys
lazy_static
libc
libm
linked_hash_map
log
matches
matrixmultiply
maybe_uninit
md5
memchr
memoffset
mime
mime_guess
multipart
nalgebra
base
geometry
linalg
ndarray
ndarray_linalg
net2
netlib_src
nix
num_complex
num_cpus
num_integer
num_rational
num_traits
opaque_debug
percent_encoding
phf
phf_shared
ppv_lite86
proc_macro2
quick_error
quote
rand
rand_chacha
rand_core
rand_distr
rawpointer
regex
regex_syntax
remove_dir_all
rosrust
rosrust_codegen
rosrust_msg
rouille
rustc_demangle
rustros_tf
ryu
safemem
scopeguard
serde
serde_bytes
serde_derive
serde_json
serde_xml_rs
sha1
siphasher
smallvec
syn
tempdir
term
thread_local
threadpool
time
tiny_http
traitobject
twoway
typeable
typenum
ucd_util
unicase
unicode_bidi
unicode_normalization
unicode_xid
url
utf8_ranges
void
xml
xml_rpc
yaml_rust
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
use std::fmt;
use std::marker::PhantomData;
use std::sync::atomic::AtomicUsize;
use std::sync::atomic::Ordering::SeqCst;
use std::sync::{Arc, Condvar, Mutex};
use std::time::Duration;

/// A thread parking primitive.
///
/// Conceptually, each `Parker` has an associated token which is initially not present:
///
/// * The [`park`] method blocks the current thread unless or until the token is available, at
///   which point it automatically consumes the token. It may also return *spuriously*, without
///   consuming the token.
///
/// * The [`park_timeout`] method works the same as [`park`], but blocks for a specified maximum
///   time.
///
/// * The [`unpark`] method atomically makes the token available if it wasn't already. Because the
///   token is initially absent, [`unpark`] followed by [`park`] will result in the second call
///   returning immediately.
///
/// In other words, each `Parker` acts a bit like a spinlock that can be locked and unlocked using
/// [`park`] and [`unpark`].
///
/// # Examples
///
/// ```
/// use std::thread;
/// use std::time::Duration;
/// use crossbeam_utils::sync::Parker;
///
/// let mut p = Parker::new();
/// let u = p.unparker().clone();
///
/// // Make the token available.
/// u.unpark();
/// // Wakes up immediately and consumes the token.
/// p.park();
///
/// thread::spawn(move || {
///     thread::sleep(Duration::from_millis(500));
///     u.unpark();
/// });
///
/// // Wakes up when `u.unpark()` provides the token, but may also wake up
/// // spuriously before that without consuming the token.
/// p.park();
/// ```
///
/// [`park`]: struct.Parker.html#method.park
/// [`park_timeout`]: struct.Parker.html#method.park_timeout
/// [`unpark`]: struct.Unparker.html#method.unpark
pub struct Parker {
    unparker: Unparker,
    _marker: PhantomData<*const ()>,
}

unsafe impl Send for Parker {}

impl Parker {
    /// Creates a new `Parker`.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_utils::sync::Parker;
    ///
    /// let p = Parker::new();
    /// ```
    ///
    pub fn new() -> Parker {
        Parker {
            unparker: Unparker {
                inner: Arc::new(Inner {
                    state: AtomicUsize::new(EMPTY),
                    lock: Mutex::new(()),
                    cvar: Condvar::new(),
                }),
            },
            _marker: PhantomData,
        }
    }

    /// Blocks the current thread until the token is made available.
    ///
    /// A call to `park` may wake up spuriously without consuming the token, and callers should be
    /// prepared for this possibility.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_utils::sync::Parker;
    ///
    /// let mut p = Parker::new();
    /// let u = p.unparker().clone();
    ///
    /// // Make the token available.
    /// u.unpark();
    ///
    /// // Wakes up immediately and consumes the token.
    /// p.park();
    /// ```
    pub fn park(&self) {
        self.unparker.inner.park(None);
    }

    /// Blocks the current thread until the token is made available, but only for a limited time.
    ///
    /// A call to `park_timeout` may wake up spuriously without consuming the token, and callers
    /// should be prepared for this possibility.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::time::Duration;
    /// use crossbeam_utils::sync::Parker;
    ///
    /// let mut p = Parker::new();
    ///
    /// // Waits for the token to become available, but will not wait longer than 500 ms.
    /// p.park_timeout(Duration::from_millis(500));
    /// ```
    pub fn park_timeout(&self, timeout: Duration) {
        self.unparker.inner.park(Some(timeout));
    }

    /// Returns a reference to an associated [`Unparker`].
    ///
    /// The returned [`Unparker`] doesn't have to be used by reference - it can also be cloned.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_utils::sync::Parker;
    ///
    /// let mut p = Parker::new();
    /// let u = p.unparker().clone();
    ///
    /// // Make the token available.
    /// u.unpark();
    /// // Wakes up immediately and consumes the token.
    /// p.park();
    /// ```
    ///
    /// [`park`]: struct.Parker.html#method.park
    /// [`park_timeout`]: struct.Parker.html#method.park_timeout
    ///
    /// [`Unparker`]: struct.Unparker.html
    pub fn unparker(&self) -> &Unparker {
        &self.unparker
    }
}

impl fmt::Debug for Parker {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.pad("Parker { .. }")
    }
}

/// Unparks a thread parked by the associated [`Parker`].
///
/// [`Parker`]: struct.Parker.html
pub struct Unparker {
    inner: Arc<Inner>,
}

unsafe impl Send for Unparker {}
unsafe impl Sync for Unparker {}

impl Unparker {
    /// Atomically makes the token available if it is not already.
    ///
    /// This method will wake up the thread blocked on [`park`] or [`park_timeout`], if there is
    /// any.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::thread;
    /// use std::time::Duration;
    /// use crossbeam_utils::sync::Parker;
    ///
    /// let mut p = Parker::new();
    /// let u = p.unparker().clone();
    ///
    /// thread::spawn(move || {
    ///     thread::sleep(Duration::from_millis(500));
    ///     u.unpark();
    /// });
    ///
    /// // Wakes up when `u.unpark()` provides the token, but may also wake up
    /// // spuriously before that without consuming the token.
    /// p.park();
    /// ```
    ///
    /// [`park`]: struct.Parker.html#method.park
    /// [`park_timeout`]: struct.Parker.html#method.park_timeout
    pub fn unpark(&self) {
        self.inner.unpark()
    }
}

impl fmt::Debug for Unparker {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.pad("Unparker { .. }")
    }
}

impl Clone for Unparker {
    fn clone(&self) -> Unparker {
        Unparker {
            inner: self.inner.clone(),
        }
    }
}

const EMPTY: usize = 0;
const PARKED: usize = 1;
const NOTIFIED: usize = 2;

struct Inner {
    state: AtomicUsize,
    lock: Mutex<()>,
    cvar: Condvar,
}

impl Inner {
    fn park(&self, timeout: Option<Duration>) {
        // If we were previously notified then we consume this notification and return quickly.
        if self
            .state
            .compare_exchange(NOTIFIED, EMPTY, SeqCst, SeqCst)
            .is_ok()
        {
            return;
        }

        // If the timeout is zero, then there is no need to actually block.
        if let Some(ref dur) = timeout {
            if *dur == Duration::from_millis(0) {
                return;
            }
        }

        // Otherwise we need to coordinate going to sleep.
        let mut m = self.lock.lock().unwrap();

        match self.state.compare_exchange(EMPTY, PARKED, SeqCst, SeqCst) {
            Ok(_) => {}
            // Consume this notification to avoid spurious wakeups in the next park.
            Err(NOTIFIED) => {
                // We must read `state` here, even though we know it will be `NOTIFIED`. This is
                // because `unpark` may have been called again since we read `NOTIFIED` in the
                // `compare_exchange` above. We must perform an acquire operation that synchronizes
                // with that `unpark` to observe any writes it made before the call to `unpark`. To
                // do that we must read from the write it made to `state`.
                let old = self.state.swap(EMPTY, SeqCst);
                assert_eq!(old, NOTIFIED, "park state changed unexpectedly");
                return;
            }
            Err(n) => panic!("inconsistent park_timeout state: {}", n),
        }

        match timeout {
            None => {
                loop {
                    // Block the current thread on the conditional variable.
                    m = self.cvar.wait(m).unwrap();

                    match self.state.compare_exchange(NOTIFIED, EMPTY, SeqCst, SeqCst) {
                        Ok(_) => return, // got a notification
                        Err(_) => {}     // spurious wakeup, go back to sleep
                    }
                }
            }
            Some(timeout) => {
                // Wait with a timeout, and if we spuriously wake up or otherwise wake up from a
                // notification we just want to unconditionally set `state` back to `EMPTY`, either
                // consuming a notification or un-flagging ourselves as parked.
                let (_m, _result) = self.cvar.wait_timeout(m, timeout).unwrap();

                match self.state.swap(EMPTY, SeqCst) {
                    NOTIFIED => {} // got a notification
                    PARKED => {}   // no notification
                    n => panic!("inconsistent park_timeout state: {}", n),
                }
            }
        }
    }

    pub fn unpark(&self) {
        // To ensure the unparked thread will observe any writes we made before this call, we must
        // perform a release operation that `park` can synchronize with. To do that we must write
        // `NOTIFIED` even if `state` is already `NOTIFIED`. That is why this must be a swap rather
        // than a compare-and-swap that returns if it reads `NOTIFIED` on failure.
        match self.state.swap(NOTIFIED, SeqCst) {
            EMPTY => return,    // no one was waiting
            NOTIFIED => return, // already unparked
            PARKED => {}        // gotta go wake someone up
            _ => panic!("inconsistent state in unpark"),
        }

        // There is a period between when the parked thread sets `state` to `PARKED` (or last
        // checked `state` in the case of a spurious wakeup) and when it actually waits on `cvar`.
        // If we were to notify during this period it would be ignored and then when the parked
        // thread went to sleep it would never wake up. Fortunately, it has `lock` locked at this
        // stage so we can acquire `lock` to wait until it is ready to receive the notification.
        //
        // Releasing `lock` before the call to `notify_one` means that when the parked thread wakes
        // it doesn't get woken only to have to wait for us to release `lock`.
        drop(self.lock.lock().unwrap());
        self.cvar.notify_one();
    }
}