Files
adler32
aho_corasick
alga
approx
ascii
atty
backtrace
backtrace_sys
base64
bitflags
blas_src
block_buffer
block_padding
brotli2
brotli_sys
buf_redux
byte_tools
byteorder
cauchy
cblas_sys
cfg_if
chrono
chunked_transfer
colored
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
ctrlc
deflate
digest
dirs
error_chain
filetime
futures
generic_array
getrandom
gzip_header
hex
httparse
hyper
idna
itoa
language_tags
lapack_src
lapacke
lapacke_sys
lazy_static
libc
libm
linked_hash_map
log
matches
matrixmultiply
maybe_uninit
md5
memchr
memoffset
mime
mime_guess
multipart
nalgebra
base
geometry
linalg
ndarray
ndarray_linalg
net2
netlib_src
nix
num_complex
num_cpus
num_integer
num_rational
num_traits
opaque_debug
percent_encoding
phf
phf_shared
ppv_lite86
proc_macro2
quick_error
quote
rand
rand_chacha
rand_core
rand_distr
rawpointer
regex
regex_syntax
remove_dir_all
rosrust
rosrust_codegen
rosrust_msg
rouille
rustc_demangle
rustros_tf
ryu
safemem
scopeguard
serde
serde_bytes
serde_derive
serde_json
serde_xml_rs
sha1
siphasher
smallvec
syn
tempdir
term
thread_local
threadpool
time
tiny_http
traitobject
twoway
typeable
typenum
ucd_util
unicase
unicode_bidi
unicode_normalization
unicode_xid
url
utf8_ranges
void
xml
xml_rpc
yaml_rust
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
use std::cmp::{Eq, PartialEq, PartialOrd, Ord, Ordering};
use std::collections::BinaryHeap;
use std::fmt::{self, Debug};
use std::iter::FromIterator;

use {Async, Future, IntoFuture, Poll, Stream};
use stream::FuturesUnordered;

#[derive(Debug)]
struct OrderWrapper<T> {
    item: T,
    index: usize,
}

impl<T> PartialEq for OrderWrapper<T> {
    fn eq(&self, other: &Self) -> bool {
        self.index == other.index
    }
}

impl<T> Eq for OrderWrapper<T> {}

impl<T> PartialOrd for OrderWrapper<T> {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl<T> Ord for OrderWrapper<T> {
    fn cmp(&self, other: &Self) -> Ordering {
        // BinaryHeap is a max heap, so compare backwards here.
        other.index.cmp(&self.index)
    }
}

impl<T> Future for OrderWrapper<T>
    where T: Future
{
    type Item = OrderWrapper<T::Item>;
    type Error = T::Error;

    fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
        let result = try_ready!(self.item.poll());
        Ok(Async::Ready(OrderWrapper {
            item: result,
            index: self.index
        }))
    }
}

/// An unbounded queue of futures.
///
/// This "combinator" is similar to `FuturesUnordered`, but it imposes an order
/// on top of the set of futures. While futures in the set will race to
/// completion in parallel, results will only be returned in the order their
/// originating futures were added to the queue.
///
/// Futures are pushed into this queue and their realized values are yielded in
/// order. This structure is optimized to manage a large number of futures.
/// Futures managed by `FuturesOrdered` will only be polled when they generate
/// notifications. This reduces the required amount of work needed to coordinate
/// large numbers of futures.
///
/// When a `FuturesOrdered` is first created, it does not contain any futures.
/// Calling `poll` in this state will result in `Ok(Async::Ready(None))` to be
/// returned. Futures are submitted to the queue using `push`; however, the
/// future will **not** be polled at this point. `FuturesOrdered` will only
/// poll managed futures when `FuturesOrdered::poll` is called. As such, it
/// is important to call `poll` after pushing new futures.
///
/// If `FuturesOrdered::poll` returns `Ok(Async::Ready(None))` this means that
/// the queue is currently not managing any futures. A future may be submitted
/// to the queue at a later time. At that point, a call to
/// `FuturesOrdered::poll` will either return the future's resolved value
/// **or** `Ok(Async::NotReady)` if the future has not yet completed. When
/// multiple futures are submitted to the queue, `FuturesOrdered::poll` will
/// return `Ok(Async::NotReady)` until the first future completes, even if
/// some of the later futures have already completed.
///
/// Note that you can create a ready-made `FuturesOrdered` via the
/// `futures_ordered` function in the `stream` module, or you can start with an
/// empty queue with the `FuturesOrdered::new` constructor.
#[must_use = "streams do nothing unless polled"]
pub struct FuturesOrdered<T>
    where T: Future
{
    in_progress: FuturesUnordered<OrderWrapper<T>>,
    queued_results: BinaryHeap<OrderWrapper<T::Item>>,
    next_incoming_index: usize,
    next_outgoing_index: usize,
}

/// Converts a list of futures into a `Stream` of results from the futures.
///
/// This function will take an list of futures (e.g. a vector, an iterator,
/// etc), and return a stream. The stream will yield items as they become
/// available on the futures internally, in the order that their originating
/// futures were submitted to the queue. If the futures complete out of order,
/// items will be stored internally within `FuturesOrdered` until all preceding
/// items have been yielded.
///
/// Note that the returned queue can also be used to dynamically push more
/// futures into the queue as they become available.
pub fn futures_ordered<I>(futures: I) -> FuturesOrdered<<I::Item as IntoFuture>::Future>
    where I: IntoIterator,
          I::Item: IntoFuture
{
    let mut queue = FuturesOrdered::new();

    for future in futures {
        queue.push(future.into_future());
    }

    return queue
}

impl<T> Default for FuturesOrdered<T> where T: Future {
    fn default() -> Self {
        FuturesOrdered::new()
    }
}

impl<T> FuturesOrdered<T>
    where T: Future
{
    /// Constructs a new, empty `FuturesOrdered`
    ///
    /// The returned `FuturesOrdered` does not contain any futures and, in this
    /// state, `FuturesOrdered::poll` will return `Ok(Async::Ready(None))`.
    pub fn new() -> FuturesOrdered<T> {
        FuturesOrdered {
            in_progress: FuturesUnordered::new(),
            queued_results: BinaryHeap::new(),
            next_incoming_index: 0,
            next_outgoing_index: 0,
        }
    }

    /// Returns the number of futures contained in the queue.
    ///
    /// This represents the total number of in-flight futures, both
    /// those currently processing and those that have completed but
    /// which are waiting for earlier futures to complete.
    pub fn len(&self) -> usize {
        self.in_progress.len() + self.queued_results.len()
    }

    /// Returns `true` if the queue contains no futures
    pub fn is_empty(&self) -> bool {
        self.in_progress.is_empty() && self.queued_results.is_empty()
    }

    /// Push a future into the queue.
    ///
    /// This function submits the given future to the internal set for managing.
    /// This function will not call `poll` on the submitted future. The caller
    /// must ensure that `FuturesOrdered::poll` is called in order to receive
    /// task notifications.
    pub fn push(&mut self, future: T) {
        let wrapped = OrderWrapper {
            item: future,
            index: self.next_incoming_index,
        };
        self.next_incoming_index += 1;
        self.in_progress.push(wrapped);
    }
}

impl<T> Stream for FuturesOrdered<T>
    where T: Future
{
    type Item = T::Item;
    type Error = T::Error;

    fn poll(&mut self) -> Poll<Option<Self::Item>, Self::Error> {
        // Get any completed futures from the unordered set.
        loop {
            match self.in_progress.poll()? {
                Async::Ready(Some(result)) => self.queued_results.push(result),
                Async::Ready(None) | Async::NotReady => break,
            }
        }

        if let Some(next_result) = self.queued_results.peek() {
            // PeekMut::pop is not stable yet QQ
            if next_result.index != self.next_outgoing_index {
                return Ok(Async::NotReady);
            }
        } else if !self.in_progress.is_empty() {
            return Ok(Async::NotReady);
        } else {
            return Ok(Async::Ready(None));
        }

        let next_result = self.queued_results.pop().unwrap();
        self.next_outgoing_index += 1;
        Ok(Async::Ready(Some(next_result.item)))
    }
}

impl<T: Debug> Debug for FuturesOrdered<T>
    where T: Future
{
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write!(fmt, "FuturesOrdered {{ ... }}")
    }
}

impl<F: Future> FromIterator<F> for FuturesOrdered<F> {
    fn from_iter<T>(iter: T) -> Self 
        where T: IntoIterator<Item = F>
    {
        let mut new = FuturesOrdered::new();
        for future in iter.into_iter() {
            new.push(future);
        }
        new
    }
}