Files
adler32
aho_corasick
alga
approx
ascii
atty
backtrace
backtrace_sys
base64
bitflags
blas_src
block_buffer
block_padding
brotli2
brotli_sys
buf_redux
byte_tools
byteorder
cauchy
cblas_sys
cfg_if
chrono
chunked_transfer
colored
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
ctrlc
deflate
digest
dirs
error_chain
filetime
futures
generic_array
getrandom
gzip_header
hex
httparse
hyper
idna
itoa
language_tags
lapack_src
lapacke
lapacke_sys
lazy_static
libc
libm
linked_hash_map
log
matches
matrixmultiply
maybe_uninit
md5
memchr
memoffset
mime
mime_guess
multipart
nalgebra
base
geometry
linalg
ndarray
ndarray_linalg
net2
netlib_src
nix
num_complex
num_cpus
num_integer
num_rational
num_traits
opaque_debug
percent_encoding
phf
phf_shared
ppv_lite86
proc_macro2
quick_error
quote
rand
rand_chacha
rand_core
rand_distr
rawpointer
regex
regex_syntax
remove_dir_all
rosrust
rosrust_codegen
rosrust_msg
rouille
rustc_demangle
rustros_tf
ryu
safemem
scopeguard
serde
serde_bytes
serde_derive
serde_json
serde_xml_rs
sha1
siphasher
smallvec
syn
tempdir
term
thread_local
threadpool
time
tiny_http
traitobject
twoway
typeable
typenum
ucd_util
unicase
unicode_bidi
unicode_normalization
unicode_xid
url
utf8_ranges
void
xml
xml_rpc
yaml_rust
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
// origin: FreeBSD /usr/src/lib/msun/src/s_exp2f.c
//-
// Copyright (c) 2005 David Schultz <das@FreeBSD.ORG>
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimer in the
//    documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
// OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
// SUCH DAMAGE.

const TBLSIZE: usize = 16;

static EXP2FT: [u64; TBLSIZE] = [
    0x3fe6a09e667f3bcd,
    0x3fe7a11473eb0187,
    0x3fe8ace5422aa0db,
    0x3fe9c49182a3f090,
    0x3feae89f995ad3ad,
    0x3fec199bdd85529c,
    0x3fed5818dcfba487,
    0x3feea4afa2a490da,
    0x3ff0000000000000,
    0x3ff0b5586cf9890f,
    0x3ff172b83c7d517b,
    0x3ff2387a6e756238,
    0x3ff306fe0a31b715,
    0x3ff3dea64c123422,
    0x3ff4bfdad5362a27,
    0x3ff5ab07dd485429,
];

// exp2f(x): compute the base 2 exponential of x
//
// Accuracy: Peak error < 0.501 ulp; location of peak: -0.030110927.
//
// Method: (equally-spaced tables)
//
//   Reduce x:
//     x = k + y, for integer k and |y| <= 1/2.
//     Thus we have exp2f(x) = 2**k * exp2(y).
//
//   Reduce y:
//     y = i/TBLSIZE + z for integer i near y * TBLSIZE.
//     Thus we have exp2(y) = exp2(i/TBLSIZE) * exp2(z),
//     with |z| <= 2**-(TBLSIZE+1).
//
//   We compute exp2(i/TBLSIZE) via table lookup and exp2(z) via a
//   degree-4 minimax polynomial with maximum error under 1.4 * 2**-33.
//   Using double precision for everything except the reduction makes
//   roundoff error insignificant and simplifies the scaling step.
//
//   This method is due to Tang, but I do not use his suggested parameters:
//
//      Tang, P.  Table-driven Implementation of the Exponential Function
//      in IEEE Floating-Point Arithmetic.  TOMS 15(2), 144-157 (1989).

/// Exponential, base 2 (f32)
///
/// Calculate `2^x`, that is, 2 raised to the power `x`.
#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
pub fn exp2f(mut x: f32) -> f32 {
    let redux = f32::from_bits(0x4b400000) / TBLSIZE as f32;
    let p1 = f32::from_bits(0x3f317218);
    let p2 = f32::from_bits(0x3e75fdf0);
    let p3 = f32::from_bits(0x3d6359a4);
    let p4 = f32::from_bits(0x3c1d964e);

    // double_t t, r, z;
    // uint32_t ix, i0, k;

    let x1p127 = f32::from_bits(0x7f000000);

    /* Filter out exceptional cases. */
    let ui = f32::to_bits(x);
    let ix = ui & 0x7fffffff;
    if ix > 0x42fc0000 {
        /* |x| > 126 */
        if ix > 0x7f800000 {
            /* NaN */
            return x;
        }
        if ui >= 0x43000000 && ui < 0x80000000 {
            /* x >= 128 */
            x *= x1p127;
            return x;
        }
        if ui >= 0x80000000 {
            /* x < -126 */
            if ui >= 0xc3160000 || (ui & 0x0000ffff != 0) {
                force_eval!(f32::from_bits(0x80000001) / x);
            }
            if ui >= 0xc3160000 {
                /* x <= -150 */
                return 0.0;
            }
        }
    } else if ix <= 0x33000000 {
        /* |x| <= 0x1p-25 */
        return 1.0 + x;
    }

    /* Reduce x, computing z, i0, and k. */
    let ui = f32::to_bits(x + redux);
    let mut i0 = ui;
    i0 += TBLSIZE as u32 / 2;
    let k = i0 / TBLSIZE as u32;
    let ukf = f64::from_bits(((0x3ff + k) as u64) << 52);
    i0 &= TBLSIZE as u32 - 1;
    let mut uf = f32::from_bits(ui);
    uf -= redux;
    let z: f64 = (x - uf) as f64;
    /* Compute r = exp2(y) = exp2ft[i0] * p(z). */
    let r: f64 = f64::from_bits(EXP2FT[i0 as usize]);
    let t: f64 = r as f64 * z;
    let r: f64 = r + t * (p1 as f64 + z * p2 as f64) + t * (z * z) * (p3 as f64 + z * p4 as f64);

    /* Scale by 2**k */
    (r * ukf) as f32
}