Files
adler32
aho_corasick
alga
approx
ascii
atty
backtrace
backtrace_sys
base64
bitflags
blas_src
block_buffer
block_padding
brotli2
brotli_sys
buf_redux
byte_tools
byteorder
cauchy
cblas_sys
cfg_if
chrono
chunked_transfer
colored
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
ctrlc
deflate
digest
dirs
error_chain
filetime
futures
generic_array
getrandom
gzip_header
hex
httparse
hyper
idna
itoa
language_tags
lapack_src
lapacke
lapacke_sys
lazy_static
libc
libm
linked_hash_map
log
matches
matrixmultiply
maybe_uninit
md5
memchr
memoffset
mime
mime_guess
multipart
nalgebra
base
geometry
linalg
ndarray
ndarray_linalg
net2
netlib_src
nix
num_complex
num_cpus
num_integer
num_rational
num_traits
opaque_debug
percent_encoding
phf
phf_shared
ppv_lite86
proc_macro2
quick_error
quote
rand
rand_chacha
rand_core
rand_distr
rawpointer
regex
regex_syntax
remove_dir_all
rosrust
rosrust_codegen
rosrust_msg
rouille
rustc_demangle
rustros_tf
ryu
safemem
scopeguard
serde
serde_bytes
serde_derive
serde_json
serde_xml_rs
sha1
siphasher
smallvec
syn
tempdir
term
thread_local
threadpool
time
tiny_http
traitobject
twoway
typeable
typenum
ucd_util
unicase
unicode_bidi
unicode_normalization
unicode_xid
url
utf8_ranges
void
xml
xml_rpc
yaml_rust
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
use core::{f32, f64};

use super::scalbn;

const ZEROINFNAN: i32 = 0x7ff - 0x3ff - 52 - 1;

struct Num {
    m: u64,
    e: i32,
    sign: i32,
}

fn normalize(x: f64) -> Num {
    let x1p63: f64 = f64::from_bits(0x43e0000000000000); // 0x1p63 === 2 ^ 63

    let mut ix: u64 = x.to_bits();
    let mut e: i32 = (ix >> 52) as i32;
    let sign: i32 = e & 0x800;
    e &= 0x7ff;
    if e == 0 {
        ix = (x * x1p63).to_bits();
        e = (ix >> 52) as i32 & 0x7ff;
        e = if e != 0 { e - 63 } else { 0x800 };
    }
    ix &= (1 << 52) - 1;
    ix |= 1 << 52;
    ix <<= 1;
    e -= 0x3ff + 52 + 1;
    Num { m: ix, e, sign }
}

fn mul(x: u64, y: u64) -> (u64, u64) {
    let t1: u64;
    let t2: u64;
    let t3: u64;
    let xlo: u64 = x as u32 as u64;
    let xhi: u64 = x >> 32;
    let ylo: u64 = y as u32 as u64;
    let yhi: u64 = y >> 32;

    t1 = xlo * ylo;
    t2 = xlo * yhi + xhi * ylo;
    t3 = xhi * yhi;
    let lo = t1.wrapping_add(t2 << 32);
    let hi = t3 + (t2 >> 32) + (t1 > lo) as u64;
    (hi, lo)
}

/// Floating multiply add (f64)
///
/// Computes `(x*y)+z`, rounded as one ternary operation:
/// Computes the value (as if) to infinite precision and rounds once to the result format,
/// according to the rounding mode characterized by the value of FLT_ROUNDS.
#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
pub fn fma(x: f64, y: f64, z: f64) -> f64 {
    let x1p63: f64 = f64::from_bits(0x43e0000000000000); // 0x1p63 === 2 ^ 63
    let x0_ffffff8p_63 = f64::from_bits(0x3bfffffff0000000); // 0x0.ffffff8p-63

    /* normalize so top 10bits and last bit are 0 */
    let nx = normalize(x);
    let ny = normalize(y);
    let nz = normalize(z);

    if nx.e >= ZEROINFNAN || ny.e >= ZEROINFNAN {
        return x * y + z;
    }
    if nz.e >= ZEROINFNAN {
        if nz.e > ZEROINFNAN {
            /* z==0 */
            return x * y + z;
        }
        return z;
    }

    /* mul: r = x*y */
    let zhi: u64;
    let zlo: u64;
    let (mut rhi, mut rlo) = mul(nx.m, ny.m);
    /* either top 20 or 21 bits of rhi and last 2 bits of rlo are 0 */

    /* align exponents */
    let mut e: i32 = nx.e + ny.e;
    let mut d: i32 = nz.e - e;
    /* shift bits z<<=kz, r>>=kr, so kz+kr == d, set e = e+kr (== ez-kz) */
    if d > 0 {
        if d < 64 {
            zlo = nz.m << d;
            zhi = nz.m >> (64 - d);
        } else {
            zlo = 0;
            zhi = nz.m;
            e = nz.e - 64;
            d -= 64;
            if d == 0 {
            } else if d < 64 {
                rlo = rhi << (64 - d) | rlo >> d | ((rlo << (64 - d)) != 0) as u64;
                rhi = rhi >> d;
            } else {
                rlo = 1;
                rhi = 0;
            }
        }
    } else {
        zhi = 0;
        d = -d;
        if d == 0 {
            zlo = nz.m;
        } else if d < 64 {
            zlo = nz.m >> d | ((nz.m << (64 - d)) != 0) as u64;
        } else {
            zlo = 1;
        }
    }

    /* add */
    let mut sign: i32 = nx.sign ^ ny.sign;
    let samesign: bool = (sign ^ nz.sign) == 0;
    let mut nonzero: i32 = 1;
    if samesign {
        /* r += z */
        rlo = rlo.wrapping_add(zlo);
        rhi += zhi + (rlo < zlo) as u64;
    } else {
        /* r -= z */
        let t = rlo;
        rlo = rlo.wrapping_sub(zlo);
        rhi = rhi.wrapping_sub(zhi.wrapping_sub((t < rlo) as u64));
        if (rhi >> 63) != 0 {
            rlo = (-(rlo as i64)) as u64;
            rhi = (-(rhi as i64)) as u64 - (rlo != 0) as u64;
            sign = (sign == 0) as i32;
        }
        nonzero = (rhi != 0) as i32;
    }

    /* set rhi to top 63bit of the result (last bit is sticky) */
    if nonzero != 0 {
        e += 64;
        d = rhi.leading_zeros() as i32 - 1;
        /* note: d > 0 */
        rhi = rhi << d | rlo >> (64 - d) | ((rlo << d) != 0) as u64;
    } else if rlo != 0 {
        d = rlo.leading_zeros() as i32 - 1;
        if d < 0 {
            rhi = rlo >> 1 | (rlo & 1);
        } else {
            rhi = rlo << d;
        }
    } else {
        /* exact +-0 */
        return x * y + z;
    }
    e -= d;

    /* convert to double */
    let mut i: i64 = rhi as i64; /* i is in [1<<62,(1<<63)-1] */
    if sign != 0 {
        i = -i;
    }
    let mut r: f64 = i as f64; /* |r| is in [0x1p62,0x1p63] */

    if e < -1022 - 62 {
        /* result is subnormal before rounding */
        if e == -1022 - 63 {
            let mut c: f64 = x1p63;
            if sign != 0 {
                c = -c;
            }
            if r == c {
                /* min normal after rounding, underflow depends
                on arch behaviour which can be imitated by
                a double to float conversion */
                let fltmin: f32 = (x0_ffffff8p_63 * f32::MIN_POSITIVE as f64 * r) as f32;
                return f64::MIN_POSITIVE / f32::MIN_POSITIVE as f64 * fltmin as f64;
            }
            /* one bit is lost when scaled, add another top bit to
            only round once at conversion if it is inexact */
            if (rhi << 53) != 0 {
                i = (rhi >> 1 | (rhi & 1) | 1 << 62) as i64;
                if sign != 0 {
                    i = -i;
                }
                r = i as f64;
                r = 2. * r - c; /* remove top bit */

                /* raise underflow portably, such that it
                cannot be optimized away */
                {
                    let tiny: f64 = f64::MIN_POSITIVE / f32::MIN_POSITIVE as f64 * r;
                    r += (tiny * tiny) * (r - r);
                }
            }
        } else {
            /* only round once when scaled */
            d = 10;
            i = ((rhi >> d | ((rhi << (64 - d)) != 0) as u64) << d) as i64;
            if sign != 0 {
                i = -i;
            }
            r = i as f64;
        }
    }
    scalbn(r, e)
}

#[cfg(test)]
mod tests {
    use super::*;
    #[test]
    fn fma_segfault() {
        // These two inputs cause fma to segfault on release due to overflow:
        assert_eq!(
            fma(
                -0.0000000000000002220446049250313,
                -0.0000000000000002220446049250313,
                -0.0000000000000002220446049250313
            ),
            -0.00000000000000022204460492503126,
        );

        assert_eq!(fma(-0.992, -0.992, -0.992), -0.00793599999988632,);
    }
}