Files
adler32
aho_corasick
alga
approx
ascii
atty
backtrace
backtrace_sys
base64
bitflags
blas_src
block_buffer
block_padding
brotli2
brotli_sys
buf_redux
byte_tools
byteorder
cauchy
cblas_sys
cfg_if
chrono
chunked_transfer
colored
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
ctrlc
deflate
digest
dirs
error_chain
filetime
futures
generic_array
getrandom
gzip_header
hex
httparse
hyper
idna
itoa
language_tags
lapack_src
lapacke
lapacke_sys
lazy_static
libc
libm
linked_hash_map
log
matches
matrixmultiply
maybe_uninit
md5
memchr
memoffset
mime
mime_guess
multipart
nalgebra
base
geometry
linalg
ndarray
ndarray_linalg
net2
netlib_src
nix
num_complex
num_cpus
num_integer
num_rational
num_traits
opaque_debug
percent_encoding
phf
phf_shared
ppv_lite86
proc_macro2
quick_error
quote
rand
rand_chacha
rand_core
rand_distr
rawpointer
regex
regex_syntax
remove_dir_all
rosrust
rosrust_codegen
rosrust_msg
rouille
rustc_demangle
rustros_tf
ryu
safemem
scopeguard
serde
serde_bytes
serde_derive
serde_json
serde_xml_rs
sha1
siphasher
smallvec
syn
tempdir
term
thread_local
threadpool
time
tiny_http
traitobject
twoway
typeable
typenum
ucd_util
unicase
unicode_bidi
unicode_normalization
unicode_xid
url
utf8_ranges
void
xml
xml_rpc
yaml_rust
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
/* origin: FreeBSD /usr/src/lib/msun/src/k_tan.c */
/*
 * ====================================================
 * Copyright 2004 Sun Microsystems, Inc.  All Rights Reserved.
 *
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

/* |tan(x)/x - t(x)| < 2**-25.5 (~[-2e-08, 2e-08]). */
const T: [f64; 6] = [
    0.333331395030791399758,   /* 0x15554d3418c99f.0p-54 */
    0.133392002712976742718,   /* 0x1112fd38999f72.0p-55 */
    0.0533812378445670393523,  /* 0x1b54c91d865afe.0p-57 */
    0.0245283181166547278873,  /* 0x191df3908c33ce.0p-58 */
    0.00297435743359967304927, /* 0x185dadfcecf44e.0p-61 */
    0.00946564784943673166728, /* 0x1362b9bf971bcd.0p-59 */
];

#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
pub(crate) fn k_tanf(x: f64, odd: bool) -> f32 {
    let z = x * x;
    /*
     * Split up the polynomial into small independent terms to give
     * opportunities for parallel evaluation.  The chosen splitting is
     * micro-optimized for Athlons (XP, X64).  It costs 2 multiplications
     * relative to Horner's method on sequential machines.
     *
     * We add the small terms from lowest degree up for efficiency on
     * non-sequential machines (the lowest degree terms tend to be ready
     * earlier).  Apart from this, we don't care about order of
     * operations, and don't need to to care since we have precision to
     * spare.  However, the chosen splitting is good for accuracy too,
     * and would give results as accurate as Horner's method if the
     * small terms were added from highest degree down.
     */
    let mut r = T[4] + z * T[5];
    let t = T[2] + z * T[3];
    let w = z * z;
    let s = z * x;
    let u = T[0] + z * T[1];
    r = (x + s * u) + (s * w) * (t + w * r);
    (if odd { -1. / r } else { r }) as f32
}