Files
adler32
aho_corasick
alga
approx
ascii
atty
backtrace
backtrace_sys
base64
bitflags
blas_src
block_buffer
block_padding
brotli2
brotli_sys
buf_redux
byte_tools
byteorder
cauchy
cblas_sys
cfg_if
chrono
chunked_transfer
colored
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
ctrlc
deflate
digest
dirs
error_chain
filetime
futures
generic_array
getrandom
gzip_header
hex
httparse
hyper
idna
itoa
language_tags
lapack_src
lapacke
lapacke_sys
lazy_static
libc
libm
linked_hash_map
log
matches
matrixmultiply
maybe_uninit
md5
memchr
memoffset
mime
mime_guess
multipart
nalgebra
base
geometry
linalg
ndarray
ndarray_linalg
net2
netlib_src
nix
num_complex
num_cpus
num_integer
num_rational
num_traits
opaque_debug
percent_encoding
phf
phf_shared
ppv_lite86
proc_macro2
quick_error
quote
rand
rand_chacha
rand_core
rand_distr
rawpointer
regex
regex_syntax
remove_dir_all
rosrust
rosrust_codegen
rosrust_msg
rouille
rustc_demangle
rustros_tf
ryu
safemem
scopeguard
serde
serde_bytes
serde_derive
serde_json
serde_xml_rs
sha1
siphasher
smallvec
syn
tempdir
term
thread_local
threadpool
time
tiny_http
traitobject
twoway
typeable
typenum
ucd_util
unicase
unicode_bidi
unicode_normalization
unicode_xid
url
utf8_ranges
void
xml
xml_rpc
yaml_rust
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
/* origin: FreeBSD /usr/src/lib/msun/src/e_lgammaf_r.c */
/*
 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
 */
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

use super::{floorf, k_cosf, k_sinf, logf};

const PI: f32 = 3.1415927410e+00; /* 0x40490fdb */
const A0: f32 = 7.7215664089e-02; /* 0x3d9e233f */
const A1: f32 = 3.2246702909e-01; /* 0x3ea51a66 */
const A2: f32 = 6.7352302372e-02; /* 0x3d89f001 */
const A3: f32 = 2.0580807701e-02; /* 0x3ca89915 */
const A4: f32 = 7.3855509982e-03; /* 0x3bf2027e */
const A5: f32 = 2.8905137442e-03; /* 0x3b3d6ec6 */
const A6: f32 = 1.1927076848e-03; /* 0x3a9c54a1 */
const A7: f32 = 5.1006977446e-04; /* 0x3a05b634 */
const A8: f32 = 2.2086278477e-04; /* 0x39679767 */
const A9: f32 = 1.0801156895e-04; /* 0x38e28445 */
const A10: f32 = 2.5214456400e-05; /* 0x37d383a2 */
const A11: f32 = 4.4864096708e-05; /* 0x383c2c75 */
const TC: f32 = 1.4616321325e+00; /* 0x3fbb16c3 */
const TF: f32 = -1.2148628384e-01; /* 0xbdf8cdcd */
/* TT = -(tail of TF) */
const TT: f32 = 6.6971006518e-09; /* 0x31e61c52 */
const T0: f32 = 4.8383611441e-01; /* 0x3ef7b95e */
const T1: f32 = -1.4758771658e-01; /* 0xbe17213c */
const T2: f32 = 6.4624942839e-02; /* 0x3d845a15 */
const T3: f32 = -3.2788541168e-02; /* 0xbd064d47 */
const T4: f32 = 1.7970675603e-02; /* 0x3c93373d */
const T5: f32 = -1.0314224288e-02; /* 0xbc28fcfe */
const T6: f32 = 6.1005386524e-03; /* 0x3bc7e707 */
const T7: f32 = -3.6845202558e-03; /* 0xbb7177fe */
const T8: f32 = 2.2596477065e-03; /* 0x3b141699 */
const T9: f32 = -1.4034647029e-03; /* 0xbab7f476 */
const T10: f32 = 8.8108185446e-04; /* 0x3a66f867 */
const T11: f32 = -5.3859531181e-04; /* 0xba0d3085 */
const T12: f32 = 3.1563205994e-04; /* 0x39a57b6b */
const T13: f32 = -3.1275415677e-04; /* 0xb9a3f927 */
const T14: f32 = 3.3552918467e-04; /* 0x39afe9f7 */
const U0: f32 = -7.7215664089e-02; /* 0xbd9e233f */
const U1: f32 = 6.3282704353e-01; /* 0x3f2200f4 */
const U2: f32 = 1.4549225569e+00; /* 0x3fba3ae7 */
const U3: f32 = 9.7771751881e-01; /* 0x3f7a4bb2 */
const U4: f32 = 2.2896373272e-01; /* 0x3e6a7578 */
const U5: f32 = 1.3381091878e-02; /* 0x3c5b3c5e */
const V1: f32 = 2.4559779167e+00; /* 0x401d2ebe */
const V2: f32 = 2.1284897327e+00; /* 0x4008392d */
const V3: f32 = 7.6928514242e-01; /* 0x3f44efdf */
const V4: f32 = 1.0422264785e-01; /* 0x3dd572af */
const V5: f32 = 3.2170924824e-03; /* 0x3b52d5db */
const S0: f32 = -7.7215664089e-02; /* 0xbd9e233f */
const S1: f32 = 2.1498242021e-01; /* 0x3e5c245a */
const S2: f32 = 3.2577878237e-01; /* 0x3ea6cc7a */
const S3: f32 = 1.4635047317e-01; /* 0x3e15dce6 */
const S4: f32 = 2.6642270386e-02; /* 0x3cda40e4 */
const S5: f32 = 1.8402845599e-03; /* 0x3af135b4 */
const S6: f32 = 3.1947532989e-05; /* 0x3805ff67 */
const R1: f32 = 1.3920053244e+00; /* 0x3fb22d3b */
const R2: f32 = 7.2193557024e-01; /* 0x3f38d0c5 */
const R3: f32 = 1.7193385959e-01; /* 0x3e300f6e */
const R4: f32 = 1.8645919859e-02; /* 0x3c98bf54 */
const R5: f32 = 7.7794247773e-04; /* 0x3a4beed6 */
const R6: f32 = 7.3266842264e-06; /* 0x36f5d7bd */
const W0: f32 = 4.1893854737e-01; /* 0x3ed67f1d */
const W1: f32 = 8.3333335817e-02; /* 0x3daaaaab */
const W2: f32 = -2.7777778450e-03; /* 0xbb360b61 */
const W3: f32 = 7.9365057172e-04; /* 0x3a500cfd */
const W4: f32 = -5.9518753551e-04; /* 0xba1c065c */
const W5: f32 = 8.3633989561e-04; /* 0x3a5b3dd2 */
const W6: f32 = -1.6309292987e-03; /* 0xbad5c4e8 */

/* sin(PI*x) assuming x > 2^-100, if sin(PI*x)==0 the sign is arbitrary */
fn sin_pi(mut x: f32) -> f32 {
    let mut y: f64;
    let mut n: isize;

    /* spurious inexact if odd int */
    x = 2.0 * (x * 0.5 - floorf(x * 0.5)); /* x mod 2.0 */

    n = (x * 4.0) as isize;
    n = (n + 1) / 2;
    y = (x as f64) - (n as f64) * 0.5;
    y *= 3.14159265358979323846;
    match n {
        1 => k_cosf(y),
        2 => k_sinf(-y),
        3 => -k_cosf(y),
        0 | _ => k_sinf(y),
    }
}

pub fn lgammaf_r(mut x: f32) -> (f32, i32) {
    let u = x.to_bits();
    let mut t: f32;
    let y: f32;
    let mut z: f32;
    let nadj: f32;
    let p: f32;
    let p1: f32;
    let p2: f32;
    let p3: f32;
    let q: f32;
    let mut r: f32;
    let w: f32;
    let ix: u32;
    let i: i32;
    let sign: bool;
    let mut signgam: i32;

    /* purge off +-inf, NaN, +-0, tiny and negative arguments */
    signgam = 1;
    sign = (u >> 31) != 0;
    ix = u & 0x7fffffff;
    if ix >= 0x7f800000 {
        return (x * x, signgam);
    }
    if ix < 0x35000000 {
        /* |x| < 2**-21, return -log(|x|) */
        if sign {
            signgam = -1;
            x = -x;
        }
        return (-logf(x), signgam);
    }
    if sign {
        x = -x;
        t = sin_pi(x);
        if t == 0.0 {
            /* -integer */
            return (1.0 / (x - x), signgam);
        }
        if t > 0.0 {
            signgam = -1;
        } else {
            t = -t;
        }
        nadj = logf(PI / (t * x));
    } else {
        nadj = 0.0;
    }

    /* purge off 1 and 2 */
    if ix == 0x3f800000 || ix == 0x40000000 {
        r = 0.0;
    }
    /* for x < 2.0 */
    else if ix < 0x40000000 {
        if ix <= 0x3f666666 {
            /* lgamma(x) = lgamma(x+1)-log(x) */
            r = -logf(x);
            if ix >= 0x3f3b4a20 {
                y = 1.0 - x;
                i = 0;
            } else if ix >= 0x3e6d3308 {
                y = x - (TC - 1.0);
                i = 1;
            } else {
                y = x;
                i = 2;
            }
        } else {
            r = 0.0;
            if ix >= 0x3fdda618 {
                /* [1.7316,2] */
                y = 2.0 - x;
                i = 0;
            } else if ix >= 0x3F9da620 {
                /* [1.23,1.73] */
                y = x - TC;
                i = 1;
            } else {
                y = x - 1.0;
                i = 2;
            }
        }
        match i {
            0 => {
                z = y * y;
                p1 = A0 + z * (A2 + z * (A4 + z * (A6 + z * (A8 + z * A10))));
                p2 = z * (A1 + z * (A3 + z * (A5 + z * (A7 + z * (A9 + z * A11)))));
                p = y * p1 + p2;
                r += p - 0.5 * y;
            }
            1 => {
                z = y * y;
                w = z * y;
                p1 = T0 + w * (T3 + w * (T6 + w * (T9 + w * T12))); /* parallel comp */
                p2 = T1 + w * (T4 + w * (T7 + w * (T10 + w * T13)));
                p3 = T2 + w * (T5 + w * (T8 + w * (T11 + w * T14)));
                p = z * p1 - (TT - w * (p2 + y * p3));
                r += TF + p;
            }
            2 => {
                p1 = y * (U0 + y * (U1 + y * (U2 + y * (U3 + y * (U4 + y * U5)))));
                p2 = 1.0 + y * (V1 + y * (V2 + y * (V3 + y * (V4 + y * V5))));
                r += -0.5 * y + p1 / p2;
            }
            #[cfg(debug_assertions)]
            _ => unreachable!(),
            #[cfg(not(debug_assertions))]
            _ => {}
        }
    } else if ix < 0x41000000 {
        /* x < 8.0 */
        i = x as i32;
        y = x - (i as f32);
        p = y * (S0 + y * (S1 + y * (S2 + y * (S3 + y * (S4 + y * (S5 + y * S6))))));
        q = 1.0 + y * (R1 + y * (R2 + y * (R3 + y * (R4 + y * (R5 + y * R6)))));
        r = 0.5 * y + p / q;
        z = 1.0; /* lgamma(1+s) = log(s) + lgamma(s) */
        // TODO: In C, this was implemented using switch jumps with fallthrough.
        // Does this implementation have performance problems?
        if i >= 7 {
            z *= y + 6.0;
        }
        if i >= 6 {
            z *= y + 5.0;
        }
        if i >= 5 {
            z *= y + 4.0;
        }
        if i >= 4 {
            z *= y + 3.0;
        }
        if i >= 3 {
            z *= y + 2.0;
            r += logf(z);
        }
    } else if ix < 0x5c800000 {
        /* 8.0 <= x < 2**58 */
        t = logf(x);
        z = 1.0 / x;
        y = z * z;
        w = W0 + z * (W1 + y * (W2 + y * (W3 + y * (W4 + y * (W5 + y * W6)))));
        r = (x - 0.5) * (t - 1.0) + w;
    } else {
        /* 2**58 <= x <= inf */
        r = x * (logf(x) - 1.0);
    }
    if sign {
        r = nadj - r;
    }
    return (r, signgam);
}