Files
adler32
aho_corasick
alga
approx
ascii
atty
backtrace
backtrace_sys
base64
bitflags
blas_src
block_buffer
block_padding
brotli2
brotli_sys
buf_redux
byte_tools
byteorder
cauchy
cblas_sys
cfg_if
chrono
chunked_transfer
colored
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
ctrlc
deflate
digest
dirs
error_chain
filetime
futures
generic_array
getrandom
gzip_header
hex
httparse
hyper
idna
itoa
language_tags
lapack_src
lapacke
lapacke_sys
lazy_static
libc
libm
linked_hash_map
log
matches
matrixmultiply
maybe_uninit
md5
memchr
memoffset
mime
mime_guess
multipart
nalgebra
base
geometry
linalg
ndarray
ndarray_linalg
net2
netlib_src
nix
num_complex
num_cpus
num_integer
num_rational
num_traits
opaque_debug
percent_encoding
phf
phf_shared
ppv_lite86
proc_macro2
quick_error
quote
rand
rand_chacha
rand_core
rand_distr
rawpointer
regex
regex_syntax
remove_dir_all
rosrust
rosrust_codegen
rosrust_msg
rouille
rustc_demangle
rustros_tf
ryu
safemem
scopeguard
serde
serde_bytes
serde_derive
serde_json
serde_xml_rs
sha1
siphasher
smallvec
syn
tempdir
term
thread_local
threadpool
time
tiny_http
traitobject
twoway
typeable
typenum
ucd_util
unicase
unicode_bidi
unicode_normalization
unicode_xid
url
utf8_ranges
void
xml
xml_rpc
yaml_rust
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
/* origin: FreeBSD /usr/src/lib/msun/src/e_sqrtf.c */
/*
 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
 */
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
pub fn sqrtf(x: f32) -> f32 {
    // On wasm32 we know that LLVM's intrinsic will compile to an optimized
    // `f32.sqrt` native instruction, so we can leverage this for both code size
    // and speed.
    llvm_intrinsically_optimized! {
        #[cfg(target_arch = "wasm32")] {
            return if x < 0.0 {
                ::core::f32::NAN
            } else {
                unsafe { ::core::intrinsics::sqrtf32(x) }
            }
        }
    }
    #[cfg(target_feature = "sse")]
    {
        // Note: This path is unlikely since LLVM will usually have already
        // optimized sqrt calls into hardware instructions if sse is available,
        // but if someone does end up here they'll apprected the speed increase.
        #[cfg(target_arch = "x86")]
        use core::arch::x86::*;
        #[cfg(target_arch = "x86_64")]
        use core::arch::x86_64::*;
        unsafe {
            let m = _mm_set_ss(x);
            let m_sqrt = _mm_sqrt_ss(m);
            _mm_cvtss_f32(m_sqrt)
        }
    }
    #[cfg(not(target_feature = "sse"))]
    {
        const TINY: f32 = 1.0e-30;

        let mut z: f32;
        let sign: i32 = 0x80000000u32 as i32;
        let mut ix: i32;
        let mut s: i32;
        let mut q: i32;
        let mut m: i32;
        let mut t: i32;
        let mut i: i32;
        let mut r: u32;

        ix = x.to_bits() as i32;

        /* take care of Inf and NaN */
        if (ix as u32 & 0x7f800000) == 0x7f800000 {
            return x * x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */
        }

        /* take care of zero */
        if ix <= 0 {
            if (ix & !sign) == 0 {
                return x; /* sqrt(+-0) = +-0 */
            }
            if ix < 0 {
                return (x - x) / (x - x); /* sqrt(-ve) = sNaN */
            }
        }

        /* normalize x */
        m = ix >> 23;
        if m == 0 {
            /* subnormal x */
            i = 0;
            while ix & 0x00800000 == 0 {
                ix <<= 1;
                i = i + 1;
            }
            m -= i - 1;
        }
        m -= 127; /* unbias exponent */
        ix = (ix & 0x007fffff) | 0x00800000;
        if m & 1 == 1 {
            /* odd m, double x to make it even */
            ix += ix;
        }
        m >>= 1; /* m = [m/2] */

        /* generate sqrt(x) bit by bit */
        ix += ix;
        q = 0;
        s = 0;
        r = 0x01000000; /* r = moving bit from right to left */

        while r != 0 {
            t = s + r as i32;
            if t <= ix {
                s = t + r as i32;
                ix -= t;
                q += r as i32;
            }
            ix += ix;
            r >>= 1;
        }

        /* use floating add to find out rounding direction */
        if ix != 0 {
            z = 1.0 - TINY; /* raise inexact flag */
            if z >= 1.0 {
                z = 1.0 + TINY;
                if z > 1.0 {
                    q += 2;
                } else {
                    q += q & 1;
                }
            }
        }

        ix = (q >> 1) + 0x3f000000;
        ix += m << 23;
        f32::from_bits(ix as u32)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use core::f32::*;

    #[test]
    fn sanity_check() {
        assert_eq!(sqrtf(100.0), 10.0);
        assert_eq!(sqrtf(4.0), 2.0);
    }

    /// The spec: https://en.cppreference.com/w/cpp/numeric/math/sqrt
    #[test]
    fn spec_tests() {
        // Not Asserted: FE_INVALID exception is raised if argument is negative.
        assert!(sqrtf(-1.0).is_nan());
        assert!(sqrtf(NAN).is_nan());
        for f in [0.0, -0.0, INFINITY].iter().copied() {
            assert_eq!(sqrtf(f), f);
        }
    }
}