Files
adler32
aho_corasick
alga
approx
ascii
atty
backtrace
backtrace_sys
base64
bitflags
blas_src
block_buffer
block_padding
brotli2
brotli_sys
buf_redux
byte_tools
byteorder
cauchy
cblas_sys
cfg_if
chrono
chunked_transfer
colored
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
ctrlc
deflate
digest
dirs
error_chain
filetime
futures
generic_array
getrandom
gzip_header
hex
httparse
hyper
idna
itoa
language_tags
lapack_src
lapacke
lapacke_sys
lazy_static
libc
libm
linked_hash_map
log
matches
matrixmultiply
maybe_uninit
md5
memchr
memoffset
mime
mime_guess
multipart
nalgebra
base
geometry
linalg
ndarray
ndarray_linalg
net2
netlib_src
nix
num_complex
num_cpus
num_integer
num_rational
num_traits
opaque_debug
percent_encoding
phf
phf_shared
ppv_lite86
proc_macro2
quick_error
quote
rand
rand_chacha
rand_core
rand_distr
rawpointer
regex
regex_syntax
remove_dir_all
rosrust
rosrust_codegen
rosrust_msg
rouille
rustc_demangle
rustros_tf
ryu
safemem
scopeguard
serde
serde_bytes
serde_derive
serde_json
serde_xml_rs
sha1
siphasher
smallvec
syn
tempdir
term
thread_local
threadpool
time
tiny_http
traitobject
twoway
typeable
typenum
ucd_util
unicase
unicode_bidi
unicode_normalization
unicode_xid
url
utf8_ranges
void
xml
xml_rpc
yaml_rust
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
use num::Zero;

use crate::allocator::Allocator;
use crate::{RealField, ComplexField};
use crate::storage::{Storage, StorageMut};
use crate::base::{DefaultAllocator, Matrix, Dim, MatrixMN};
use crate::constraint::{SameNumberOfRows, SameNumberOfColumns, ShapeConstraint};


// FIXME: this should be be a trait on alga?
/// A trait for abstract matrix norms.
///
/// This may be moved to the alga crate in the future.
pub trait Norm<N: ComplexField> {
    /// Apply this norm to the given matrix.
    fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::RealField
        where R: Dim, C: Dim, S: Storage<N, R, C>;
    /// Use the metric induced by this norm to compute the metric distance between the two given matrices.
    fn metric_distance<R1, C1, S1, R2, C2, S2>(&self, m1: &Matrix<N, R1, C1, S1>, m2: &Matrix<N, R2, C2, S2>) -> N::RealField
        where R1: Dim, C1: Dim, S1: Storage<N, R1, C1>,
              R2: Dim, C2: Dim, S2: Storage<N, R2, C2>,
              ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>;
}

/// Euclidean norm.
pub struct EuclideanNorm;
/// Lp norm.
pub struct LpNorm(pub i32);
/// L-infinite norm aka. Chebytchev norm aka. uniform norm aka. suppremum norm.
pub struct UniformNorm;

impl<N: ComplexField> Norm<N> for EuclideanNorm {
    #[inline]
    fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::RealField
        where R: Dim, C: Dim, S: Storage<N, R, C> {
        m.norm_squared().sqrt()
    }

    #[inline]
    fn metric_distance<R1, C1, S1, R2, C2, S2>(&self, m1: &Matrix<N, R1, C1, S1>, m2: &Matrix<N, R2, C2, S2>) -> N::RealField
        where R1: Dim, C1: Dim, S1: Storage<N, R1, C1>,
              R2: Dim, C2: Dim, S2: Storage<N, R2, C2>,
              ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> {
        m1.zip_fold(m2, N::RealField::zero(), |acc, a, b| {
            let diff = a - b;
            acc + diff.modulus_squared()
        }).sqrt()
    }
}

impl<N: ComplexField> Norm<N> for LpNorm {
    #[inline]
    fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::RealField
        where R: Dim, C: Dim, S: Storage<N, R, C> {
        m.fold(N::RealField::zero(), |a, b| {
            a + b.modulus().powi(self.0)
        }).powf(crate::convert(1.0 / (self.0 as f64)))
    }

    #[inline]
    fn metric_distance<R1, C1, S1, R2, C2, S2>(&self, m1: &Matrix<N, R1, C1, S1>, m2: &Matrix<N, R2, C2, S2>) -> N::RealField
        where R1: Dim, C1: Dim, S1: Storage<N, R1, C1>,
              R2: Dim, C2: Dim, S2: Storage<N, R2, C2>,
              ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> {
        m1.zip_fold(m2, N::RealField::zero(), |acc, a, b| {
            let diff = a - b;
            acc + diff.modulus().powi(self.0)
        }).powf(crate::convert(1.0 / (self.0 as f64)))
    }
}

impl<N: ComplexField> Norm<N> for UniformNorm {
    #[inline]
    fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::RealField
        where R: Dim, C: Dim, S: Storage<N, R, C> {
        // NOTE: we don't use `m.amax()` here because for the complex
        // numbers this will return the max norm1 instead of the modulus.
        m.fold(N::RealField::zero(), |acc, a| acc.max(a.modulus()))
    }

    #[inline]
    fn metric_distance<R1, C1, S1, R2, C2, S2>(&self, m1: &Matrix<N, R1, C1, S1>, m2: &Matrix<N, R2, C2, S2>) -> N::RealField
        where R1: Dim, C1: Dim, S1: Storage<N, R1, C1>,
              R2: Dim, C2: Dim, S2: Storage<N, R2, C2>,
              ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> {
        m1.zip_fold(m2, N::RealField::zero(), |acc, a, b| {
            let val = (a - b).modulus();
            if val > acc {
                val
            } else {
                acc
            }
        })
    }
}


impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
    /// The squared L2 norm of this vector.
    #[inline]
    pub fn norm_squared(&self) -> N::RealField {
        let mut res = N::RealField::zero();

        for i in 0..self.ncols() {
            let col = self.column(i);
            res += col.dotc(&col).real()
        }

        res
    }

    /// The L2 norm of this matrix.
    ///
    /// Use `.apply_norm` to apply a custom norm.
    #[inline]
    pub fn norm(&self) -> N::RealField {
        self.norm_squared().sqrt()
    }

    /// Compute the distance between `self` and `rhs` using the metric induced by the euclidean norm.
    ///
    /// Use `.apply_metric_distance` to apply a custom norm.
    #[inline]
    pub fn metric_distance<R2, C2, S2>(&self, rhs: &Matrix<N, R2, C2, S2>) -> N::RealField
        where R2: Dim, C2: Dim, S2: Storage<N, R2, C2>,
              ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2> {
        self.apply_metric_distance(rhs, &EuclideanNorm)
    }

    /// Uses the given `norm` to compute the norm of `self`.
    ///
    /// # Example
    ///
    /// ```
    /// # use nalgebra::{Vector3, UniformNorm, LpNorm, EuclideanNorm};
    ///
    /// let v = Vector3::new(1.0, 2.0, 3.0);
    /// assert_eq!(v.apply_norm(&UniformNorm), 3.0);
    /// assert_eq!(v.apply_norm(&LpNorm(1)), 6.0);
    /// assert_eq!(v.apply_norm(&EuclideanNorm), v.norm());
    /// ```
    #[inline]
    pub fn apply_norm(&self, norm: &impl Norm<N>) -> N::RealField {
        norm.norm(self)
    }

    /// Uses the metric induced by the given `norm` to compute the metric distance between `self` and `rhs`.
    ///
    /// # Example
    ///
    /// ```
    /// # use nalgebra::{Vector3, UniformNorm, LpNorm, EuclideanNorm};
    ///
    /// let v1 = Vector3::new(1.0, 2.0, 3.0);
    /// let v2 = Vector3::new(10.0, 20.0, 30.0);
    ///
    /// assert_eq!(v1.apply_metric_distance(&v2, &UniformNorm), 27.0);
    /// assert_eq!(v1.apply_metric_distance(&v2, &LpNorm(1)), 27.0 + 18.0 + 9.0);
    /// assert_eq!(v1.apply_metric_distance(&v2, &EuclideanNorm), (v1 - v2).norm());
    /// ```
    #[inline]
    pub fn apply_metric_distance<R2, C2, S2>(&self, rhs: &Matrix<N, R2, C2, S2>, norm: &impl Norm<N>) -> N::RealField
        where R2: Dim, C2: Dim, S2: Storage<N, R2, C2>,
              ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2> {
        norm.metric_distance(self, rhs)
    }

    /// A synonym for the norm of this matrix.
    ///
    /// Aka the length.
    ///
    /// This function is simply implemented as a call to `norm()`
    #[inline]
    pub fn magnitude(&self) -> N::RealField {
        self.norm()
    }

    /// A synonym for the squared norm of this matrix.
    ///
    /// Aka the squared length.
    ///
    /// This function is simply implemented as a call to `norm_squared()`
    #[inline]
    pub fn magnitude_squared(&self) -> N::RealField {
        self.norm_squared()
    }


    /// Sets the magnitude of this vector unless it is smaller than `min_magnitude`.
    ///
    /// If `self.magnitude()` is smaller than `min_magnitude`, it will be left unchanged.
    /// Otherwise this is equivalent to: `*self = self.normalize() * magnitude.
    #[inline]
    pub fn try_set_magnitude(&mut self, magnitude: N::RealField, min_magnitude: N::RealField)
        where S: StorageMut<N, R, C> {
        let n = self.norm();

        if n >= min_magnitude {
            self.scale_mut(magnitude / n)
        }
    }

    /// Returns a normalized version of this matrix.
    #[inline]
    #[must_use = "Did you mean to use normalize_mut()?"]
    pub fn normalize(&self) -> MatrixMN<N, R, C>
        where DefaultAllocator: Allocator<N, R, C> {
        self.unscale(self.norm())
    }

    /// Returns a normalized version of this matrix unless its norm as smaller or equal to `eps`.
    #[inline]
    #[must_use = "Did you mean to use try_normalize_mut()?"]
    pub fn try_normalize(&self, min_norm: N::RealField) -> Option<MatrixMN<N, R, C>>
        where DefaultAllocator: Allocator<N, R, C> {
        let n = self.norm();

        if n <= min_norm {
            None
        } else {
            Some(self.unscale(n))
        }
    }

    /// The Lp norm of this matrix.
    #[inline]
    pub fn lp_norm(&self, p: i32) -> N::RealField {
        self.apply_norm(&LpNorm(p))
    }
}


impl<N: ComplexField, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
    /// Normalizes this matrix in-place and returns its norm.
    #[inline]
    pub fn normalize_mut(&mut self) -> N::RealField {
        let n = self.norm();
        self.unscale_mut(n);

        n
    }

    /// Normalizes this matrix in-place or does nothing if its norm is smaller or equal to `eps`.
    ///
    /// If the normalization succeeded, returns the old norm of this matrix.
    #[inline]
    pub fn try_normalize_mut(&mut self, min_norm: N::RealField) -> Option<N::RealField> {
        let n = self.norm();

        if n <= min_norm {
            None
        } else {
            self.unscale_mut(n);
            Some(n)
        }
    }
}