Files
adler32
aho_corasick
alga
approx
ascii
atty
backtrace
backtrace_sys
base64
bitflags
blas_src
block_buffer
block_padding
brotli2
brotli_sys
buf_redux
byte_tools
byteorder
cauchy
cblas_sys
cfg_if
chrono
chunked_transfer
colored
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
ctrlc
deflate
digest
dirs
error_chain
filetime
futures
generic_array
getrandom
gzip_header
hex
httparse
hyper
idna
itoa
language_tags
lapack_src
lapacke
lapacke_sys
lazy_static
libc
libm
linked_hash_map
log
matches
matrixmultiply
maybe_uninit
md5
memchr
memoffset
mime
mime_guess
multipart
nalgebra
base
geometry
linalg
ndarray
ndarray_linalg
net2
netlib_src
nix
num_complex
num_cpus
num_integer
num_rational
num_traits
opaque_debug
percent_encoding
phf
phf_shared
ppv_lite86
proc_macro2
quick_error
quote
rand
rand_chacha
rand_core
rand_distr
rawpointer
regex
regex_syntax
remove_dir_all
rosrust
rosrust_codegen
rosrust_msg
rouille
rustc_demangle
rustros_tf
ryu
safemem
scopeguard
serde
serde_bytes
serde_derive
serde_json
serde_xml_rs
sha1
siphasher
smallvec
syn
tempdir
term
thread_local
threadpool
time
tiny_http
traitobject
twoway
typeable
typenum
ucd_util
unicase
unicode_bidi
unicode_normalization
unicode_xid
url
utf8_ranges
void
xml
xml_rpc
yaml_rust
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
//! Krylov subspace methods

use crate::types::*;
use ndarray::*;

pub mod arnoldi;
pub mod householder;
pub mod mgs;

pub use arnoldi::{arnoldi_householder, arnoldi_mgs, Arnoldi};
pub use householder::{householder, Householder};
pub use mgs::{mgs, MGS};

/// Q-matrix
///
/// - Maybe **NOT** square
/// - Unitary for existing columns
///
pub type Q<A> = Array2<A>;

/// R-matrix
///
/// - Maybe **NOT** square
/// - Upper triangle
///
pub type R<A> = Array2<A>;

/// H-matrix
///
/// - Maybe **NOT** square
/// - Hessenberg matrix
///
pub type H<A> = Array2<A>;

/// Array type for coefficients to the current basis
///
/// - The length must be `self.len() + 1`
/// - Last component is the residual norm
///
pub type Coefficients<A> = Array1<A>;

/// Trait for creating orthogonal basis from iterator of arrays
///
/// Panic
/// -------
/// - if the size of the input array mismatches to the dimension
///
/// Example
/// -------
///
/// ```rust
/// # use ndarray::*;
/// # use ndarray_linalg::{krylov::*, *};
/// let mut mgs = MGS::new(3, 1e-9);
/// let coef = mgs.append(array![0.0, 1.0, 0.0]).into_coeff();
/// close_l2(&coef, &array![1.0], 1e-9);
///
/// let coef = mgs.append(array![1.0, 1.0, 0.0]).into_coeff();
/// close_l2(&coef, &array![1.0, 1.0], 1e-9);
///
/// // Fail if the vector is linearly dependent
/// assert!(mgs.append(array![1.0, 2.0, 0.0]).is_dependent());
///
/// // You can get coefficients of dependent vector
/// if let AppendResult::Dependent(coef) = mgs.append(array![1.0, 2.0, 0.0]) {
///     close_l2(&coef, &array![2.0, 1.0, 0.0], 1e-9);
/// }
/// ```
pub trait Orthogonalizer {
    type Elem: Scalar;

    /// Dimension of input array
    fn dim(&self) -> usize;

    /// Number of cached basis
    fn len(&self) -> usize;

    /// check if the basis spans entire space
    fn is_full(&self) -> bool {
        self.len() == self.dim()
    }

    fn is_empty(&self) -> bool {
        self.len() == 0
    }

    fn tolerance(&self) -> <Self::Elem as Scalar>::Real;

    /// Decompose given vector into the span of current basis and
    /// its tangent space
    ///
    /// - `a` becomes the tangent vector
    /// - The Coefficients to the current basis is returned.
    ///
    fn decompose<S>(&self, a: &mut ArrayBase<S, Ix1>) -> Coefficients<Self::Elem>
    where
        S: DataMut<Elem = Self::Elem>;

    /// Calculate the coefficient to the current basis basis
    ///
    /// - This will be faster than `decompose` because the construction of the residual vector may
    ///   requires more Calculation
    ///
    fn coeff<S>(&self, a: ArrayBase<S, Ix1>) -> Coefficients<Self::Elem>
    where
        S: Data<Elem = Self::Elem>;

    /// Add new vector if the residual is larger than relative tolerance
    fn append<S>(&mut self, a: ArrayBase<S, Ix1>) -> AppendResult<Self::Elem>
    where
        S: Data<Elem = Self::Elem>;

    /// Add new vector if the residual is larger than relative tolerance,
    /// and return the residual vector
    fn div_append<S>(&mut self, a: &mut ArrayBase<S, Ix1>) -> AppendResult<Self::Elem>
    where
        S: DataMut<Elem = Self::Elem>;

    /// Get Q-matrix of generated basis
    fn get_q(&self) -> Q<Self::Elem>;
}

pub enum AppendResult<A> {
    Added(Coefficients<A>),
    Dependent(Coefficients<A>),
}

impl<A: Scalar> AppendResult<A> {
    pub fn into_coeff(self) -> Coefficients<A> {
        match self {
            AppendResult::Added(c) => c,
            AppendResult::Dependent(c) => c,
        }
    }

    pub fn is_dependent(&self) -> bool {
        match self {
            AppendResult::Added(_) => false,
            AppendResult::Dependent(_) => true,
        }
    }

    pub fn coeff(&self) -> &Coefficients<A> {
        match self {
            AppendResult::Added(c) => c,
            AppendResult::Dependent(c) => c,
        }
    }

    pub fn residual_norm(&self) -> A::Real {
        let c = self.coeff();
        c[c.len() - 1].abs()
    }
}

/// Strategy for linearly dependent vectors appearing in iterative QR decomposition
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum Strategy {
    /// Terminate iteration if dependent vector comes
    Terminate,

    /// Skip dependent vector
    Skip,

    /// Orthogonalize dependent vector without adding to Q,
    /// i.e. R must be non-square like following:
    ///
    /// ```text
    /// x x x x x
    /// 0 x x x x
    /// 0 0 0 x x
    /// 0 0 0 0 x
    /// ```
    Full,
}

/// Online QR decomposition using arbitrary orthogonalizer
pub fn qr<A, S>(
    iter: impl Iterator<Item = ArrayBase<S, Ix1>>,
    mut ortho: impl Orthogonalizer<Elem = A>,
    strategy: Strategy,
) -> (Q<A>, R<A>)
where
    A: Scalar + Lapack,
    S: Data<Elem = A>,
{
    assert_eq!(ortho.len(), 0);

    let mut coefs = Vec::new();
    for a in iter {
        match ortho.append(a.into_owned()) {
            AppendResult::Added(coef) => coefs.push(coef),
            AppendResult::Dependent(coef) => match strategy {
                Strategy::Terminate => break,
                Strategy::Skip => continue,
                Strategy::Full => coefs.push(coef),
            },
        }
    }
    let n = ortho.len();
    let m = coefs.len();
    let mut r = Array2::zeros((n, m).f());
    for j in 0..m {
        for i in 0..n {
            if i < coefs[j].len() {
                r[(i, j)] = coefs[j][i];
            }
        }
    }
    (ortho.get_q(), r)
}