Files
adler32
aho_corasick
alga
approx
ascii
atty
backtrace
backtrace_sys
base64
bitflags
blas_src
block_buffer
block_padding
brotli2
brotli_sys
buf_redux
byte_tools
byteorder
cauchy
cblas_sys
cfg_if
chrono
chunked_transfer
colored
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
ctrlc
deflate
digest
dirs
error_chain
filetime
futures
generic_array
getrandom
gzip_header
hex
httparse
hyper
idna
itoa
language_tags
lapack_src
lapacke
lapacke_sys
lazy_static
libc
libm
linked_hash_map
log
matches
matrixmultiply
maybe_uninit
md5
memchr
memoffset
mime
mime_guess
multipart
nalgebra
base
geometry
linalg
ndarray
ndarray_linalg
net2
netlib_src
nix
num_complex
num_cpus
num_integer
num_rational
num_traits
opaque_debug
percent_encoding
phf
phf_shared
ppv_lite86
proc_macro2
quick_error
quote
rand
rand_chacha
rand_core
rand_distr
rawpointer
regex
regex_syntax
remove_dir_all
rosrust
rosrust_codegen
rosrust_msg
rouille
rustc_demangle
rustros_tf
ryu
safemem
scopeguard
serde
serde_bytes
serde_derive
serde_json
serde_xml_rs
sha1
siphasher
smallvec
syn
tempdir
term
thread_local
threadpool
time
tiny_http
traitobject
twoway
typeable
typenum
ucd_util
unicase
unicode_bidi
unicode_normalization
unicode_xid
url
utf8_ranges
void
xml
xml_rpc
yaml_rust
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
//! Solve Hermitian (or real symmetric) linear problems and invert Hermitian
//! (or real symmetric) matrices
//!
//! **Note that only the upper triangular portion of the matrix is used.**
//!
//! # Examples
//!
//! Solve `A * x = b`, where `A` is a Hermitian (or real symmetric) matrix:
//!
//! ```
//! #[macro_use]
//! extern crate ndarray;
//! extern crate ndarray_linalg;
//!
//! use ndarray::prelude::*;
//! use ndarray_linalg::SolveH;
//! # fn main() {
//!
//! let a: Array2<f64> = array![
//!     [3., 2., -1.],
//!     [2., -2., 4.],
//!     [-1., 4., 5.]
//! ];
//! let b: Array1<f64> = array![11., -12., 1.];
//! let x = a.solveh_into(b).unwrap();
//! assert!(x.all_close(&array![1., 3., -2.], 1e-9));
//!
//! # }
//! ```
//!
//! If you are solving multiple systems of linear equations with the same
//! Hermitian or real symmetric coefficient matrix `A`, it's faster to compute
//! the factorization once at the beginning than solving directly using `A`:
//!
//! ```
//! # extern crate ndarray;
//! # extern crate ndarray_linalg;
//! use ndarray::prelude::*;
//! use ndarray_linalg::*;
//! # fn main() {
//!
//! let a: Array2<f64> = random((3, 3));
//! let f = a.factorizeh_into().unwrap(); // Factorize A (A is consumed)
//! for _ in 0..10 {
//!     let b: Array1<f64> = random(3);
//!     let x = f.solveh_into(b).unwrap(); // Solve A * x = b using the factorization
//! }
//!
//! # }
//! ```

use ndarray::*;
use num_traits::{Float, One, Zero};

use crate::convert::*;
use crate::error::*;
use crate::layout::*;
use crate::types::*;

pub use crate::lapack::{Pivot, UPLO};

/// An interface for solving systems of Hermitian (or real symmetric) linear equations.
///
/// If you plan to solve many equations with the same Hermitian (or real
/// symmetric) coefficient matrix `A` but different `b` vectors, it's faster to
/// factor the `A` matrix once using the `FactorizeH` trait, and then solve
/// using the `BKFactorized` struct.
pub trait SolveH<A: Scalar> {
    /// Solves a system of linear equations `A * x = b` with Hermitian (or real
    /// symmetric) matrix `A`, where `A` is `self`, `b` is the argument, and
    /// `x` is the successful result.
    fn solveh<S: Data<Elem = A>>(&self, b: &ArrayBase<S, Ix1>) -> Result<Array1<A>> {
        let mut b = replicate(b);
        self.solveh_inplace(&mut b)?;
        Ok(b)
    }
    /// Solves a system of linear equations `A * x = b` with Hermitian (or real
    /// symmetric) matrix `A`, where `A` is `self`, `b` is the argument, and
    /// `x` is the successful result.
    fn solveh_into<S: DataMut<Elem = A>>(&self, mut b: ArrayBase<S, Ix1>) -> Result<ArrayBase<S, Ix1>> {
        self.solveh_inplace(&mut b)?;
        Ok(b)
    }
    /// Solves a system of linear equations `A * x = b` with Hermitian (or real
    /// symmetric) matrix `A`, where `A` is `self`, `b` is the argument, and
    /// `x` is the successful result. The value of `x` is also assigned to the
    /// argument.
    fn solveh_inplace<'a, S: DataMut<Elem = A>>(
        &self,
        b: &'a mut ArrayBase<S, Ix1>,
    ) -> Result<&'a mut ArrayBase<S, Ix1>>;
}

/// Represents the Bunch–Kaufman factorization of a Hermitian (or real
/// symmetric) matrix as `A = P * U * D * U^H * P^T`.
pub struct BKFactorized<S: Data> {
    pub a: ArrayBase<S, Ix2>,
    pub ipiv: Pivot,
}

impl<A, S> SolveH<A> for BKFactorized<S>
where
    A: Scalar + Lapack,
    S: Data<Elem = A>,
{
    fn solveh_inplace<'a, Sb>(&self, rhs: &'a mut ArrayBase<Sb, Ix1>) -> Result<&'a mut ArrayBase<Sb, Ix1>>
    where
        Sb: DataMut<Elem = A>,
    {
        unsafe {
            A::solveh(
                self.a.square_layout()?,
                UPLO::Upper,
                self.a.as_allocated()?,
                &self.ipiv,
                rhs.as_slice_mut().unwrap(),
            )?
        };
        Ok(rhs)
    }
}

impl<A, S> SolveH<A> for ArrayBase<S, Ix2>
where
    A: Scalar + Lapack,
    S: Data<Elem = A>,
{
    fn solveh_inplace<'a, Sb>(&self, rhs: &'a mut ArrayBase<Sb, Ix1>) -> Result<&'a mut ArrayBase<Sb, Ix1>>
    where
        Sb: DataMut<Elem = A>,
    {
        let f = self.factorizeh()?;
        f.solveh_inplace(rhs)
    }
}

/// An interface for computing the Bunch–Kaufman factorization of Hermitian (or
/// real symmetric) matrix refs.
pub trait FactorizeH<S: Data> {
    /// Computes the Bunch–Kaufman factorization of a Hermitian (or real
    /// symmetric) matrix.
    fn factorizeh(&self) -> Result<BKFactorized<S>>;
}

/// An interface for computing the Bunch–Kaufman factorization of Hermitian (or
/// real symmetric) matrices.
pub trait FactorizeHInto<S: Data> {
    /// Computes the Bunch–Kaufman factorization of a Hermitian (or real
    /// symmetric) matrix.
    fn factorizeh_into(self) -> Result<BKFactorized<S>>;
}

impl<A, S> FactorizeHInto<S> for ArrayBase<S, Ix2>
where
    A: Scalar + Lapack,
    S: DataMut<Elem = A>,
{
    fn factorizeh_into(mut self) -> Result<BKFactorized<S>> {
        let ipiv = unsafe { A::bk(self.square_layout()?, UPLO::Upper, self.as_allocated_mut()?)? };
        Ok(BKFactorized { a: self, ipiv: ipiv })
    }
}

impl<A, Si> FactorizeH<OwnedRepr<A>> for ArrayBase<Si, Ix2>
where
    A: Scalar + Lapack,
    Si: Data<Elem = A>,
{
    fn factorizeh(&self) -> Result<BKFactorized<OwnedRepr<A>>> {
        let mut a: Array2<A> = replicate(self);
        let ipiv = unsafe { A::bk(a.square_layout()?, UPLO::Upper, a.as_allocated_mut()?)? };
        Ok(BKFactorized { a: a, ipiv: ipiv })
    }
}

/// An interface for inverting Hermitian (or real symmetric) matrix refs.
pub trait InverseH {
    type Output;
    /// Computes the inverse of the Hermitian (or real symmetric) matrix.
    fn invh(&self) -> Result<Self::Output>;
}

/// An interface for inverting Hermitian (or real symmetric) matrices.
pub trait InverseHInto {
    type Output;
    /// Computes the inverse of the Hermitian (or real symmetric) matrix.
    fn invh_into(self) -> Result<Self::Output>;
}

impl<A, S> InverseHInto for BKFactorized<S>
where
    A: Scalar + Lapack,
    S: DataMut<Elem = A>,
{
    type Output = ArrayBase<S, Ix2>;

    fn invh_into(mut self) -> Result<ArrayBase<S, Ix2>> {
        unsafe {
            A::invh(
                self.a.square_layout()?,
                UPLO::Upper,
                self.a.as_allocated_mut()?,
                &self.ipiv,
            )?
        };
        triangular_fill_hermitian(&mut self.a, UPLO::Upper);
        Ok(self.a)
    }
}

impl<A, S> InverseH for BKFactorized<S>
where
    A: Scalar + Lapack,
    S: Data<Elem = A>,
{
    type Output = Array2<A>;

    fn invh(&self) -> Result<Self::Output> {
        let f = BKFactorized {
            a: replicate(&self.a),
            ipiv: self.ipiv.clone(),
        };
        f.invh_into()
    }
}

impl<A, S> InverseHInto for ArrayBase<S, Ix2>
where
    A: Scalar + Lapack,
    S: DataMut<Elem = A>,
{
    type Output = Self;

    fn invh_into(self) -> Result<Self::Output> {
        let f = self.factorizeh_into()?;
        f.invh_into()
    }
}

impl<A, Si> InverseH for ArrayBase<Si, Ix2>
where
    A: Scalar + Lapack,
    Si: Data<Elem = A>,
{
    type Output = Array2<A>;

    fn invh(&self) -> Result<Self::Output> {
        let f = self.factorizeh()?;
        f.invh_into()
    }
}

/// An interface for calculating determinants of Hermitian (or real symmetric) matrix refs.
pub trait DeterminantH {
    /// The element type of the matrix.
    type Elem: Scalar;

    /// Computes the determinant of the Hermitian (or real symmetric) matrix.
    fn deth(&self) -> Result<<Self::Elem as Scalar>::Real>;

    /// Computes the `(sign, natural_log)` of the determinant of the Hermitian
    /// (or real symmetric) matrix.
    ///
    /// The `natural_log` is the natural logarithm of the absolute value of the
    /// determinant. If the determinant is zero, `sign` is 0 and `natural_log`
    /// is negative infinity.
    ///
    /// To obtain the determinant, you can compute `sign * natural_log.exp()`
    /// or just call `.deth()` instead.
    ///
    /// This method is more robust than `.deth()` to very small or very large
    /// determinants since it returns the natural logarithm of the determinant
    /// rather than the determinant itself.
    fn sln_deth(&self) -> Result<(<Self::Elem as Scalar>::Real, <Self::Elem as Scalar>::Real)>;
}

/// An interface for calculating determinants of Hermitian (or real symmetric) matrices.
pub trait DeterminantHInto {
    /// The element type of the matrix.
    type Elem: Scalar;

    /// Computes the determinant of the Hermitian (or real symmetric) matrix.
    fn deth_into(self) -> Result<<Self::Elem as Scalar>::Real>;

    /// Computes the `(sign, natural_log)` of the determinant of the Hermitian
    /// (or real symmetric) matrix.
    ///
    /// The `natural_log` is the natural logarithm of the absolute value of the
    /// determinant. If the determinant is zero, `sign` is 0 and `natural_log`
    /// is negative infinity.
    ///
    /// To obtain the determinant, you can compute `sign * natural_log.exp()`
    /// or just call `.deth_into()` instead.
    ///
    /// This method is more robust than `.deth_into()` to very small or very
    /// large determinants since it returns the natural logarithm of the
    /// determinant rather than the determinant itself.
    fn sln_deth_into(self) -> Result<(<Self::Elem as Scalar>::Real, <Self::Elem as Scalar>::Real)>;
}

/// Returns the sign and natural log of the determinant.
fn bk_sln_det<P, S, A>(uplo: UPLO, ipiv_iter: P, a: &ArrayBase<S, Ix2>) -> (A::Real, A::Real)
where
    P: Iterator<Item = i32>,
    S: Data<Elem = A>,
    A: Scalar + Lapack,
{
    let mut sign = A::Real::one();
    let mut ln_det = A::Real::zero();
    let mut ipiv_enum = ipiv_iter.enumerate();
    while let Some((k, ipiv_k)) = ipiv_enum.next() {
        debug_assert!(k < a.nrows() && k < a.ncols());
        if ipiv_k > 0 {
            // 1x1 block at k, must be real.
            let elem = unsafe { a.uget((k, k)) }.re();
            debug_assert_eq!(elem.im(), Zero::zero());
            sign = sign * elem.signum();
            ln_det = ln_det + elem.abs().ln();
        } else {
            // 2x2 block at k..k+2.

            // Upper left diagonal elem, must be real.
            let upper_diag = unsafe { a.uget((k, k)) }.re();
            debug_assert_eq!(upper_diag.im(), Zero::zero());

            // Lower right diagonal elem, must be real.
            let lower_diag = unsafe { a.uget((k + 1, k + 1)) }.re();
            debug_assert_eq!(lower_diag.im(), Zero::zero());

            // Off-diagonal elements, can be complex.
            let off_diag = match uplo {
                UPLO::Upper => unsafe { a.uget((k, k + 1)) },
                UPLO::Lower => unsafe { a.uget((k + 1, k)) },
            };

            // Determinant of 2x2 block.
            let block_det = upper_diag * lower_diag - off_diag.square();
            sign = sign * block_det.signum();
            ln_det = ln_det + block_det.abs().ln();

            // Skip the k+1 ipiv value.
            ipiv_enum.next();
        }
    }
    (sign, ln_det)
}

impl<A, S> BKFactorized<S>
where
    A: Scalar + Lapack,
    S: Data<Elem = A>,
{
    /// Computes the determinant of the factorized Hermitian (or real
    /// symmetric) matrix.
    pub fn deth(&self) -> A::Real {
        let (sign, ln_det) = self.sln_deth();
        sign * ln_det.exp()
    }

    /// Computes the `(sign, natural_log)` of the determinant of the factorized
    /// Hermitian (or real symmetric) matrix.
    ///
    /// The `natural_log` is the natural logarithm of the absolute value of the
    /// determinant. If the determinant is zero, `sign` is 0 and `natural_log`
    /// is negative infinity.
    ///
    /// To obtain the determinant, you can compute `sign * natural_log.exp()`
    /// or just call `.deth()` instead.
    ///
    /// This method is more robust than `.deth()` to very small or very large
    /// determinants since it returns the natural logarithm of the determinant
    /// rather than the determinant itself.
    pub fn sln_deth(&self) -> (A::Real, A::Real) {
        bk_sln_det(UPLO::Upper, self.ipiv.iter().cloned(), &self.a)
    }

    /// Computes the determinant of the factorized Hermitian (or real
    /// symmetric) matrix.
    pub fn deth_into(self) -> A::Real {
        let (sign, ln_det) = self.sln_deth_into();
        sign * ln_det.exp()
    }

    /// Computes the `(sign, natural_log)` of the determinant of the factorized
    /// Hermitian (or real symmetric) matrix.
    ///
    /// The `natural_log` is the natural logarithm of the absolute value of the
    /// determinant. If the determinant is zero, `sign` is 0 and `natural_log`
    /// is negative infinity.
    ///
    /// To obtain the determinant, you can compute `sign * natural_log.exp()`
    /// or just call `.deth_into()` instead.
    ///
    /// This method is more robust than `.deth_into()` to very small or very
    /// large determinants since it returns the natural logarithm of the
    /// determinant rather than the determinant itself.
    pub fn sln_deth_into(self) -> (A::Real, A::Real) {
        bk_sln_det(UPLO::Upper, self.ipiv.into_iter(), &self.a)
    }
}

impl<A, S> DeterminantH for ArrayBase<S, Ix2>
where
    A: Scalar + Lapack,
    S: Data<Elem = A>,
{
    type Elem = A;

    fn deth(&self) -> Result<A::Real> {
        let (sign, ln_det) = self.sln_deth()?;
        Ok(sign * ln_det.exp())
    }

    fn sln_deth(&self) -> Result<(A::Real, A::Real)> {
        match self.factorizeh() {
            Ok(fac) => Ok(fac.sln_deth()),
            Err(LinalgError::Lapack { return_code }) if return_code > 0 => {
                // Determinant is zero.
                Ok((A::Real::zero(), A::Real::neg_infinity()))
            }
            Err(err) => Err(err),
        }
    }
}

impl<A, S> DeterminantHInto for ArrayBase<S, Ix2>
where
    A: Scalar + Lapack,
    S: DataMut<Elem = A>,
{
    type Elem = A;

    fn deth_into(self) -> Result<A::Real> {
        let (sign, ln_det) = self.sln_deth_into()?;
        Ok(sign * ln_det.exp())
    }

    fn sln_deth_into(self) -> Result<(A::Real, A::Real)> {
        match self.factorizeh_into() {
            Ok(fac) => Ok(fac.sln_deth_into()),
            Err(LinalgError::Lapack { return_code }) if return_code > 0 => {
                // Determinant is zero.
                Ok((A::Real::zero(), A::Real::neg_infinity()))
            }
            Err(err) => Err(err),
        }
    }
}