Files
adler32
aho_corasick
alga
approx
ascii
atty
backtrace
backtrace_sys
base64
bitflags
blas_src
block_buffer
block_padding
brotli2
brotli_sys
buf_redux
byte_tools
byteorder
cauchy
cblas_sys
cfg_if
chrono
chunked_transfer
colored
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
ctrlc
deflate
digest
dirs
error_chain
filetime
futures
generic_array
getrandom
gzip_header
hex
httparse
hyper
idna
itoa
language_tags
lapack_src
lapacke
lapacke_sys
lazy_static
libc
libm
linked_hash_map
log
matches
matrixmultiply
maybe_uninit
md5
memchr
memoffset
mime
mime_guess
multipart
nalgebra
base
geometry
linalg
ndarray
ndarray_linalg
net2
netlib_src
nix
num_complex
num_cpus
num_integer
num_rational
num_traits
opaque_debug
percent_encoding
phf
phf_shared
ppv_lite86
proc_macro2
quick_error
quote
rand
rand_chacha
rand_core
rand_distr
rawpointer
regex
regex_syntax
remove_dir_all
rosrust
rosrust_codegen
rosrust_msg
rouille
rustc_demangle
rustros_tf
ryu
safemem
scopeguard
serde
serde_bytes
serde_derive
serde_json
serde_xml_rs
sha1
siphasher
smallvec
syn
tempdir
term
thread_local
threadpool
time
tiny_http
traitobject
twoway
typeable
typenum
ucd_util
unicase
unicode_bidi
unicode_normalization
unicode_xid
url
utf8_ranges
void
xml
xml_rpc
yaml_rust
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
// Copyright 2018 Developers of the Rand project.
// Copyright 2013 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! The normal and derived distributions.

use rand::Rng;
use crate::{ziggurat_tables, Distribution, Open01};
use crate::utils::{ziggurat, Float};

/// Samples floating-point numbers according to the normal distribution
/// `N(0, 1)` (a.k.a. a standard normal, or Gaussian). This is equivalent to
/// `Normal::new(0.0, 1.0)` but faster.
///
/// See `Normal` for the general normal distribution.
///
/// Implemented via the ZIGNOR variant[^1] of the Ziggurat method.
///
/// [^1]: Jurgen A. Doornik (2005). [*An Improved Ziggurat Method to
///       Generate Normal Random Samples*](
///       https://www.doornik.com/research/ziggurat.pdf).
///       Nuffield College, Oxford
///
/// # Example
/// ```
/// use rand::prelude::*;
/// use rand_distr::StandardNormal;
///
/// let val: f64 = thread_rng().sample(StandardNormal);
/// println!("{}", val);
/// ```
#[derive(Clone, Copy, Debug)]
pub struct StandardNormal;

impl Distribution<f32> for StandardNormal {
    #[inline]
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f32 {
        // TODO: use optimal 32-bit implementation
        let x: f64 = self.sample(rng);
        x as f32
    }
}

impl Distribution<f64> for StandardNormal {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
        #[inline]
        fn pdf(x: f64) -> f64 {
            (-x*x/2.0).exp()
        }
        #[inline]
        fn zero_case<R: Rng + ?Sized>(rng: &mut R, u: f64) -> f64 {
            // compute a random number in the tail by hand

            // strange initial conditions, because the loop is not
            // do-while, so the condition should be true on the first
            // run, they get overwritten anyway (0 < 1, so these are
            // good).
            let mut x = 1.0f64;
            let mut y = 0.0f64;

            while -2.0 * y < x * x {
                let x_: f64 = rng.sample(Open01);
                let y_: f64 = rng.sample(Open01);

                x = x_.ln() / ziggurat_tables::ZIG_NORM_R;
                y = y_.ln();
            }

            if u < 0.0 { x - ziggurat_tables::ZIG_NORM_R } else { ziggurat_tables::ZIG_NORM_R - x }
        }

        ziggurat(rng, true, // this is symmetric
                 &ziggurat_tables::ZIG_NORM_X,
                 &ziggurat_tables::ZIG_NORM_F,
                 pdf, zero_case)
    }
}

/// The normal distribution `N(mean, std_dev**2)`.
///
/// This uses the ZIGNOR variant of the Ziggurat method, see [`StandardNormal`]
/// for more details.
/// 
/// Note that [`StandardNormal`] is an optimised implementation for mean 0, and
/// standard deviation 1.
///
/// # Example
///
/// ```
/// use rand_distr::{Normal, Distribution};
///
/// // mean 2, standard deviation 3
/// let normal = Normal::new(2.0, 3.0).unwrap();
/// let v = normal.sample(&mut rand::thread_rng());
/// println!("{} is from a N(2, 9) distribution", v)
/// ```
///
/// [`StandardNormal`]: crate::StandardNormal
#[derive(Clone, Copy, Debug)]
pub struct Normal<N> {
    mean: N,
    std_dev: N,
}

/// Error type returned from `Normal::new` and `LogNormal::new`.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Error {
    /// `std_dev < 0` or `nan`.
    StdDevTooSmall,
}

impl<N: Float> Normal<N>
where StandardNormal: Distribution<N>
{
    /// Construct a new `Normal` distribution with the given mean and
    /// standard deviation.
    #[inline]
    pub fn new(mean: N, std_dev: N) -> Result<Normal<N>, Error> {
        if !(std_dev >= N::from(0.0)) {
            return Err(Error::StdDevTooSmall);
        }
        Ok(Normal {
            mean,
            std_dev
        })
    }
}

impl<N: Float> Distribution<N> for Normal<N>
where StandardNormal: Distribution<N>
{
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> N {
        let n: N = rng.sample(StandardNormal);
        self.mean + self.std_dev * n
    }
}


/// The log-normal distribution `ln N(mean, std_dev**2)`.
///
/// If `X` is log-normal distributed, then `ln(X)` is `N(mean, std_dev**2)`
/// distributed.
///
/// # Example
///
/// ```
/// use rand_distr::{LogNormal, Distribution};
///
/// // mean 2, standard deviation 3
/// let log_normal = LogNormal::new(2.0, 3.0).unwrap();
/// let v = log_normal.sample(&mut rand::thread_rng());
/// println!("{} is from an ln N(2, 9) distribution", v)
/// ```
#[derive(Clone, Copy, Debug)]
pub struct LogNormal<N> {
    norm: Normal<N>
}

impl<N: Float> LogNormal<N>
where StandardNormal: Distribution<N>
{
    /// Construct a new `LogNormal` distribution with the given mean
    /// and standard deviation of the logarithm of the distribution.
    #[inline]
    pub fn new(mean: N, std_dev: N) -> Result<LogNormal<N>, Error> {
        if !(std_dev >= N::from(0.0)) {
            return Err(Error::StdDevTooSmall);
        }
        Ok(LogNormal { norm: Normal::new(mean, std_dev).unwrap() })
    }
}

impl<N: Float> Distribution<N> for LogNormal<N>
where StandardNormal: Distribution<N>
{
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> N {
        self.norm.sample(rng).exp()
    }
}

#[cfg(test)]
mod tests {
    use crate::Distribution;
    use super::{Normal, LogNormal};

    #[test]
    fn test_normal() {
        let norm = Normal::new(10.0, 10.0).unwrap();
        let mut rng = crate::test::rng(210);
        for _ in 0..1000 {
            norm.sample(&mut rng);
        }
    }
    #[test]
    #[should_panic]
    fn test_normal_invalid_sd() {
        Normal::new(10.0, -1.0).unwrap();
    }


    #[test]
    fn test_log_normal() {
        let lnorm = LogNormal::new(10.0, 10.0).unwrap();
        let mut rng = crate::test::rng(211);
        for _ in 0..1000 {
            lnorm.sample(&mut rng);
        }
    }
    #[test]
    #[should_panic]
    fn test_log_normal_invalid_sd() {
        LogNormal::new(10.0, -1.0).unwrap();
    }
}