Files
adler32
aho_corasick
alga
approx
ascii
atty
backtrace
backtrace_sys
base64
bitflags
blas_src
block_buffer
block_padding
brotli2
brotli_sys
buf_redux
byte_tools
byteorder
cauchy
cblas_sys
cfg_if
chrono
chunked_transfer
colored
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
ctrlc
deflate
digest
dirs
error_chain
filetime
futures
generic_array
getrandom
gzip_header
hex
httparse
hyper
idna
itoa
language_tags
lapack_src
lapacke
lapacke_sys
lazy_static
libc
libm
linked_hash_map
log
matches
matrixmultiply
maybe_uninit
md5
memchr
memoffset
mime
mime_guess
multipart
nalgebra
base
geometry
linalg
ndarray
ndarray_linalg
net2
netlib_src
nix
num_complex
num_cpus
num_integer
num_rational
num_traits
opaque_debug
percent_encoding
phf
phf_shared
ppv_lite86
proc_macro2
quick_error
quote
rand
rand_chacha
rand_core
rand_distr
rawpointer
regex
regex_syntax
remove_dir_all
rosrust
rosrust_codegen
rosrust_msg
rouille
rustc_demangle
rustros_tf
ryu
safemem
scopeguard
serde
serde_bytes
serde_derive
serde_json
serde_xml_rs
sha1
siphasher
smallvec
syn
tempdir
term
thread_local
threadpool
time
tiny_http
traitobject
twoway
typeable
typenum
ucd_util
unicase
unicode_bidi
unicode_normalization
unicode_xid
url
utf8_ranges
void
xml
xml_rpc
yaml_rust
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
// Copyright 2018 Developers of the Rand project.
// Copyright 2016-2017 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! The Poisson distribution.

use rand::Rng;
use crate::{Distribution, Cauchy, Standard};
use crate::utils::Float;

/// The Poisson distribution `Poisson(lambda)`.
///
/// This distribution has a density function:
/// `f(k) = lambda^k * exp(-lambda) / k!` for `k >= 0`.
///
/// # Example
///
/// ```
/// use rand_distr::{Poisson, Distribution};
///
/// let poi = Poisson::new(2.0).unwrap();
/// let v: u64 = poi.sample(&mut rand::thread_rng());
/// println!("{} is from a Poisson(2) distribution", v);
/// ```
#[derive(Clone, Copy, Debug)]
pub struct Poisson<N> {
    lambda: N,
    // precalculated values
    exp_lambda: N,
    log_lambda: N,
    sqrt_2lambda: N,
    magic_val: N,
}

/// Error type returned from `Poisson::new`.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Error {
    /// `lambda <= 0` or `nan`.
    ShapeTooSmall,
}

impl<N: Float> Poisson<N>
where Standard: Distribution<N>
{
    /// Construct a new `Poisson` with the given shape parameter
    /// `lambda`.
    pub fn new(lambda: N) -> Result<Poisson<N>, Error> {
        if !(lambda > N::from(0.0)) {
            return Err(Error::ShapeTooSmall);
        }
        let log_lambda = lambda.ln();
        Ok(Poisson {
            lambda,
            exp_lambda: (-lambda).exp(),
            log_lambda,
            sqrt_2lambda: (N::from(2.0) * lambda).sqrt(),
            magic_val: lambda * log_lambda - (N::from(1.0) + lambda).log_gamma(),
        })
    }
}

impl<N: Float> Distribution<N> for Poisson<N>
where Standard: Distribution<N>
{
    #[inline]
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> N {
        // using the algorithm from Numerical Recipes in C

        // for low expected values use the Knuth method
        if self.lambda < N::from(12.0) {
            let mut result = N::from(0.);
            let mut p = N::from(1.0);
            while p > self.exp_lambda {
                p *= rng.gen::<N>();
                result += N::from(1.);
            }
            result - N::from(1.)
        }
        // high expected values - rejection method
        else {
            // we use the Cauchy distribution as the comparison distribution
            // f(x) ~ 1/(1+x^2)
            let cauchy = Cauchy::new(N::from(0.0), N::from(1.0)).unwrap();
            let mut result;

            loop {
                let mut comp_dev;

                loop {
                    // draw from the Cauchy distribution
                    comp_dev = rng.sample(cauchy);
                    // shift the peak of the comparison ditribution
                    result = self.sqrt_2lambda * comp_dev + self.lambda;
                    // repeat the drawing until we are in the range of possible values
                    if result >= N::from(0.0) {
                        break;
                    }
                }
                // now the result is a random variable greater than 0 with Cauchy distribution
                // the result should be an integer value
                result = result.floor();

                // this is the ratio of the Poisson distribution to the comparison distribution
                // the magic value scales the distribution function to a range of approximately 0-1
                // since it is not exact, we multiply the ratio by 0.9 to avoid ratios greater than 1
                // this doesn't change the resulting distribution, only increases the rate of failed drawings
                let check = N::from(0.9) * (N::from(1.0) + comp_dev * comp_dev)
                    * (result * self.log_lambda - (N::from(1.0) + result).log_gamma() - self.magic_val).exp();

                // check with uniform random value - if below the threshold, we are within the target distribution
                if rng.gen::<N>() <= check {
                    break;
                }
            }
            result
        }
    }
}

impl<N: Float> Distribution<u64> for Poisson<N>
where Standard: Distribution<N>
{
    #[inline]
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u64 {
        let result: N = self.sample(rng);
        result.to_u64().unwrap()
    }
}

#[cfg(test)]
mod test {
    use crate::Distribution;
    use super::Poisson;

    #[test]
    fn test_poisson_10() {
        let poisson = Poisson::new(10.0).unwrap();
        let mut rng = crate::test::rng(123);
        let mut sum_u64 = 0;
        let mut sum_f64 = 0.;
        for _ in 0..1000 {
            let s_u64: u64 = poisson.sample(&mut rng);
            let s_f64: f64 = poisson.sample(&mut rng);
            sum_u64 += s_u64;
            sum_f64 += s_f64;
        }
        let avg_u64 = (sum_u64 as f64) / 1000.0;
        let avg_f64 = sum_f64 / 1000.0;
        println!("Poisson averages: {} (u64)  {} (f64)", avg_u64, avg_f64);
        for &avg in &[avg_u64, avg_f64] {
            assert!((avg - 10.0).abs() < 0.5); // not 100% certain, but probable enough
        }
    }

    #[test]
    fn test_poisson_15() {
        // Take the 'high expected values' path
        let poisson = Poisson::new(15.0).unwrap();
        let mut rng = crate::test::rng(123);
        let mut sum_u64 = 0;
        let mut sum_f64 = 0.;
        for _ in 0..1000 {
            let s_u64: u64 = poisson.sample(&mut rng);
            let s_f64: f64 = poisson.sample(&mut rng);
            sum_u64 += s_u64;
            sum_f64 += s_f64;
        }
        let avg_u64 = (sum_u64 as f64) / 1000.0;
        let avg_f64 = sum_f64 / 1000.0;
        println!("Poisson average: {} (u64)  {} (f64)", avg_u64, avg_f64);
        for &avg in &[avg_u64, avg_f64] {
            assert!((avg - 15.0).abs() < 0.5); // not 100% certain, but probable enough
        }
    }

    #[test]
    fn test_poisson_10_f32() {
        let poisson = Poisson::new(10.0f32).unwrap();
        let mut rng = crate::test::rng(123);
        let mut sum_u64 = 0;
        let mut sum_f32 = 0.;
        for _ in 0..1000 {
            let s_u64: u64 = poisson.sample(&mut rng);
            let s_f32: f32 = poisson.sample(&mut rng);
            sum_u64 += s_u64;
            sum_f32 += s_f32;
        }
        let avg_u64 = (sum_u64 as f32) / 1000.0;
        let avg_f32 = sum_f32 / 1000.0;
        println!("Poisson averages: {} (u64)  {} (f32)", avg_u64, avg_f32);
        for &avg in &[avg_u64, avg_f32] {
            assert!((avg - 10.0).abs() < 0.5); // not 100% certain, but probable enough
        }
    }

    #[test]
    fn test_poisson_15_f32() {
        // Take the 'high expected values' path
        let poisson = Poisson::new(15.0f32).unwrap();
        let mut rng = crate::test::rng(123);
        let mut sum_u64 = 0;
        let mut sum_f32 = 0.;
        for _ in 0..1000 {
            let s_u64: u64 = poisson.sample(&mut rng);
            let s_f32: f32 = poisson.sample(&mut rng);
            sum_u64 += s_u64;
            sum_f32 += s_f32;
        }
        let avg_u64 = (sum_u64 as f32) / 1000.0;
        let avg_f32 = sum_f32 / 1000.0;
        println!("Poisson average: {} (u64)  {} (f32)", avg_u64, avg_f32);
        for &avg in &[avg_u64, avg_f32] {
            assert!((avg - 15.0).abs() < 0.5); // not 100% certain, but probable enough
        }
    }

    #[test]
    #[should_panic]
    fn test_poisson_invalid_lambda_zero() {
        Poisson::new(0.0).unwrap();
    }

    #[test]
    #[should_panic]
    fn test_poisson_invalid_lambda_neg() {
        Poisson::new(-10.0).unwrap();
    }
}