Files
adler32
aho_corasick
alga
approx
ascii
atty
backtrace
backtrace_sys
base64
bitflags
blas_src
block_buffer
block_padding
brotli2
brotli_sys
buf_redux
byte_tools
byteorder
cauchy
cblas_sys
cfg_if
chrono
chunked_transfer
colored
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
ctrlc
deflate
digest
dirs
error_chain
filetime
futures
generic_array
getrandom
gzip_header
hex
httparse
hyper
idna
itoa
language_tags
lapack_src
lapacke
lapacke_sys
lazy_static
libc
libm
linked_hash_map
log
matches
matrixmultiply
maybe_uninit
md5
memchr
memoffset
mime
mime_guess
multipart
nalgebra
base
geometry
linalg
ndarray
ndarray_linalg
net2
netlib_src
nix
num_complex
num_cpus
num_integer
num_rational
num_traits
opaque_debug
percent_encoding
phf
phf_shared
ppv_lite86
proc_macro2
quick_error
quote
rand
rand_chacha
rand_core
rand_distr
rawpointer
regex
regex_syntax
remove_dir_all
rosrust
rosrust_codegen
rosrust_msg
rouille
rustc_demangle
rustros_tf
ryu
safemem
scopeguard
serde
serde_bytes
serde_derive
serde_json
serde_xml_rs
sha1
siphasher
smallvec
syn
tempdir
term
thread_local
threadpool
time
tiny_http
traitobject
twoway
typeable
typenum
ucd_util
unicase
unicode_bidi
unicode_normalization
unicode_xid
url
utf8_ranges
void
xml
xml_rpc
yaml_rust
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Math helper functions

use rand::Rng;
use crate::ziggurat_tables;
use rand::distributions::hidden_export::IntoFloat;
use core::{cmp, ops};

/// Trait for floating-point scalar types
/// 
/// This allows many distributions to work with `f32` or `f64` parameters and is
/// potentially extensible. Note however that the `Exp1` and `StandardNormal`
/// distributions are implemented exclusively for `f32` and `f64`.
/// 
/// The bounds and methods are based purely on internal
/// requirements, and will change as needed.
pub trait Float: Copy + Sized + cmp::PartialOrd
    + ops::Neg<Output = Self>
    + ops::Add<Output = Self>
    + ops::Sub<Output = Self>
    + ops::Mul<Output = Self>
    + ops::Div<Output = Self>
    + ops::AddAssign + ops::SubAssign + ops::MulAssign + ops::DivAssign
{
    /// The constant π
    fn pi() -> Self;
    /// Support approximate representation of a f64 value
    fn from(x: f64) -> Self;
    /// Support converting to an unsigned integer.
    fn to_u64(self) -> Option<u64>;
    
    /// Take the absolute value of self
    fn abs(self) -> Self;
    /// Take the largest integer less than or equal to self
    fn floor(self) -> Self;
    
    /// Take the exponential of self
    fn exp(self) -> Self;
    /// Take the natural logarithm of self
    fn ln(self) -> Self;
    /// Take square root of self
    fn sqrt(self) -> Self;
    /// Take self to a floating-point power
    fn powf(self, power: Self) -> Self;
    
    /// Take the tangent of self
    fn tan(self) -> Self;
    /// Take the logarithm of the gamma function of self
    fn log_gamma(self) -> Self;
}

impl Float for f32 {
    #[inline]
    fn pi() -> Self { core::f32::consts::PI }
    #[inline]
    fn from(x: f64) -> Self { x as f32 }
    #[inline]
    fn to_u64(self) -> Option<u64> {
        if self >= 0. && self <= ::core::u64::MAX as f32 {
            Some(self as u64)
        } else {
            None
        }
    }
    
    #[inline]
    fn abs(self) -> Self { self.abs() }
    #[inline]
    fn floor(self) -> Self { self.floor() }
    
    #[inline]
    fn exp(self) -> Self { self.exp() }
    #[inline]
    fn ln(self) -> Self { self.ln() }
    #[inline]
    fn sqrt(self) -> Self { self.sqrt() }
    #[inline]
    fn powf(self, power: Self) -> Self { self.powf(power) }
    
    #[inline]
    fn tan(self) -> Self { self.tan() }
    #[inline]
    fn log_gamma(self) -> Self {
        let result = log_gamma(self.into());
        assert!(result <= ::core::f32::MAX.into());
        assert!(result >= ::core::f32::MIN.into());
        result as f32
    }
}

impl Float for f64 {
    #[inline]
    fn pi() -> Self { core::f64::consts::PI }
    #[inline]
    fn from(x: f64) -> Self { x }
    #[inline]
    fn to_u64(self) -> Option<u64> {
        if self >= 0. && self <= ::core::u64::MAX as f64 {
            Some(self as u64)
        } else {
            None
        }
    }
    
    #[inline]
    fn abs(self) -> Self { self.abs() }
    #[inline]
    fn floor(self) -> Self { self.floor() }
    
    #[inline]
    fn exp(self) -> Self { self.exp() }
    #[inline]
    fn ln(self) -> Self { self.ln() }
    #[inline]
    fn sqrt(self) -> Self { self.sqrt() }
    #[inline]
    fn powf(self, power: Self) -> Self { self.powf(power) }
    
    #[inline]
    fn tan(self) -> Self { self.tan() }
    #[inline]
    fn log_gamma(self) -> Self { log_gamma(self) }
}

/// Calculates ln(gamma(x)) (natural logarithm of the gamma
/// function) using the Lanczos approximation.
///
/// The approximation expresses the gamma function as:
/// `gamma(z+1) = sqrt(2*pi)*(z+g+0.5)^(z+0.5)*exp(-z-g-0.5)*Ag(z)`
/// `g` is an arbitrary constant; we use the approximation with `g=5`.
///
/// Noting that `gamma(z+1) = z*gamma(z)` and applying `ln` to both sides:
/// `ln(gamma(z)) = (z+0.5)*ln(z+g+0.5)-(z+g+0.5) + ln(sqrt(2*pi)*Ag(z)/z)`
///
/// `Ag(z)` is an infinite series with coefficients that can be calculated
/// ahead of time - we use just the first 6 terms, which is good enough
/// for most purposes.
pub(crate) fn log_gamma(x: f64) -> f64 {
    // precalculated 6 coefficients for the first 6 terms of the series
    let coefficients: [f64; 6] = [
        76.18009172947146,
        -86.50532032941677,
        24.01409824083091,
        -1.231739572450155,
        0.1208650973866179e-2,
        -0.5395239384953e-5,
    ];

    // (x+0.5)*ln(x+g+0.5)-(x+g+0.5)
    let tmp = x + 5.5;
    let log = (x + 0.5) * tmp.ln() - tmp;

    // the first few terms of the series for Ag(x)
    let mut a = 1.000000000190015;
    let mut denom = x;
    for &coeff in &coefficients {
        denom += 1.0;
        a += coeff / denom;
    }

    // get everything together
    // a is Ag(x)
    // 2.5066... is sqrt(2pi)
    log + (2.5066282746310005 * a / x).ln()
}

/// Sample a random number using the Ziggurat method (specifically the
/// ZIGNOR variant from Doornik 2005). Most of the arguments are
/// directly from the paper:
///
/// * `rng`: source of randomness
/// * `symmetric`: whether this is a symmetric distribution, or one-sided with P(x < 0) = 0.
/// * `X`: the $x_i$ abscissae.
/// * `F`: precomputed values of the PDF at the $x_i$, (i.e. $f(x_i)$)
/// * `F_DIFF`: precomputed values of $f(x_i) - f(x_{i+1})$
/// * `pdf`: the probability density function
/// * `zero_case`: manual sampling from the tail when we chose the
///    bottom box (i.e. i == 0)

// the perf improvement (25-50%) is definitely worth the extra code
// size from force-inlining.
#[inline(always)]
pub(crate) fn ziggurat<R: Rng + ?Sized, P, Z>(
            rng: &mut R,
            symmetric: bool,
            x_tab: ziggurat_tables::ZigTable,
            f_tab: ziggurat_tables::ZigTable,
            mut pdf: P,
            mut zero_case: Z)
            -> f64 where P: FnMut(f64) -> f64, Z: FnMut(&mut R, f64) -> f64 {
    loop {
        // As an optimisation we re-implement the conversion to a f64.
        // From the remaining 12 most significant bits we use 8 to construct `i`.
        // This saves us generating a whole extra random number, while the added
        // precision of using 64 bits for f64 does not buy us much.
        let bits = rng.next_u64();
        let i = bits as usize & 0xff;

        let u = if symmetric {
            // Convert to a value in the range [2,4) and substract to get [-1,1)
            // We can't convert to an open range directly, that would require
            // substracting `3.0 - EPSILON`, which is not representable.
            // It is possible with an extra step, but an open range does not
            // seem neccesary for the ziggurat algorithm anyway.
            (bits >> 12).into_float_with_exponent(1) - 3.0
        } else {
            // Convert to a value in the range [1,2) and substract to get (0,1)
            (bits >> 12).into_float_with_exponent(0)
            - (1.0 - std::f64::EPSILON / 2.0)
        };
        let x = u * x_tab[i];

        let test_x = if symmetric { x.abs() } else {x};

        // algebraically equivalent to |u| < x_tab[i+1]/x_tab[i] (or u < x_tab[i+1]/x_tab[i])
        if test_x < x_tab[i + 1] {
            return x;
        }
        if i == 0 {
            return zero_case(rng, u);
        }
        // algebraically equivalent to f1 + DRanU()*(f0 - f1) < 1
        if f_tab[i + 1] + (f_tab[i] - f_tab[i + 1]) * rng.gen::<f64>() < pdf(x) {
            return x;
        }
    }
}