[−][src]Struct nalgebra::Id
The universal identity element wrt. a given operator, usually noted Id
with a
context-dependent subscript.
By default, it is the multiplicative identity element. It represents the degenerate set containing only the identity element of any group-like structure. It has no dimension known at compile-time. All its operations are no-ops.
Methods
impl<O> Id<O> where
O: Operator,
[src][−]
O: Operator,
Trait Implementations
impl<O> AbsDiffEq<Id<O>> for Id<O> where
O: Operator,
[src][+]
O: Operator,
impl<O> AbstractGroup<O> for Id<O> where
O: Operator,
[src]
O: Operator,
impl<O> AbstractGroupAbelian<O> for Id<O> where
O: Operator,
[src][+]
O: Operator,
impl<O> AbstractLoop<O> for Id<O> where
O: Operator,
[src]
O: Operator,
impl<O> AbstractMagma<O> for Id<O> where
O: Operator,
[src][+]
O: Operator,
impl<O> AbstractMonoid<O> for Id<O> where
O: Operator,
[src][+]
O: Operator,
impl<O> AbstractQuasigroup<O> for Id<O> where
O: Operator,
[src][+]
O: Operator,
impl<O> AbstractSemigroup<O> for Id<O> where
O: Operator,
[src][+]
O: Operator,
impl Add<Id<Additive>> for Id<Additive>
[src][+]
impl AddAssign<Id<Additive>> for Id<Additive>
[src][+]
impl<E> AffineTransformation<E> for Id<Multiplicative> where
E: EuclideanSpace,
[src][+]
E: EuclideanSpace,
impl<O> Clone for Id<O> where
O: Operator,
[src][+]
O: Operator,
impl<O> Copy for Id<O> where
O: Operator,
[src]
O: Operator,
impl<O> Debug for Id<O> where
O: Operator + Debug,
[src][+]
O: Operator + Debug,
impl<E> DirectIsometry<E> for Id<Multiplicative> where
E: EuclideanSpace,
[src]
E: EuclideanSpace,
impl<O> Display for Id<O> where
O: Operator,
[src][+]
O: Operator,
impl Div<Id<Multiplicative>> for Id<Multiplicative>
[src][+]
impl DivAssign<Id<Multiplicative>> for Id<Multiplicative>
[src][+]
impl<O> Eq for Id<O> where
O: Operator,
[src]
O: Operator,
impl<O> Identity<O> for Id<O> where
O: Operator,
[src][+]
O: Operator,
impl<E> Isometry<E> for Id<Multiplicative> where
E: EuclideanSpace,
[src]
E: EuclideanSpace,
impl<O> JoinSemilattice for Id<O> where
O: Operator,
[src][+]
O: Operator,
impl<O> Lattice for Id<O> where
O: Operator,
[src][+]
O: Operator,
impl<O> MeetSemilattice for Id<O> where
O: Operator,
[src][+]
O: Operator,
impl Mul<Id<Multiplicative>> for Id<Multiplicative>
[src][+]
impl MulAssign<Id<Multiplicative>> for Id<Multiplicative>
[src][+]
impl One for Id<Multiplicative>
[src][+]
impl<E> OrthogonalTransformation<E> for Id<Multiplicative> where
E: EuclideanSpace,
[src]
E: EuclideanSpace,
impl<O> PartialEq<Id<O>> for Id<O> where
O: Operator,
[src][+]
O: Operator,
impl<O> PartialOrd<Id<O>> for Id<O> where
O: Operator,
[src][+]
O: Operator,
impl<E> ProjectiveTransformation<E> for Id<Multiplicative> where
E: EuclideanSpace,
[src][+]
E: EuclideanSpace,
impl<O> RelativeEq<Id<O>> for Id<O> where
O: Operator,
[src][+]
O: Operator,
impl<E> Rotation<E> for Id<Multiplicative> where
E: EuclideanSpace,
[src][+]
E: EuclideanSpace,
impl<E> Scaling<E> for Id<Multiplicative> where
E: EuclideanSpace,
[src][+]
E: EuclideanSpace,
impl<E> Similarity<E> for Id<Multiplicative> where
E: EuclideanSpace,
[src][+]
E: EuclideanSpace,
impl<O, T> SubsetOf<T> for Id<O> where
O: Operator,
T: Identity<O> + PartialEq<T>,
[src][+]
O: Operator,
T: Identity<O> + PartialEq<T>,
impl<E> Transformation<E> for Id<Multiplicative> where
E: EuclideanSpace,
[src][+]
E: EuclideanSpace,
impl<E> Translation<E> for Id<Multiplicative> where
E: EuclideanSpace,
[src][+]
E: EuclideanSpace,
impl<O> TwoSidedInverse<O> for Id<O> where
O: Operator,
[src][+]
O: Operator,
impl<O> UlpsEq<Id<O>> for Id<O> where
O: Operator,
[src][+]
O: Operator,
impl Zero for Id<Additive>
[src][+]
Auto Trait Implementations
impl<O> RefUnwindSafe for Id<O> where
O: RefUnwindSafe,
O: RefUnwindSafe,
impl<O> Send for Id<O> where
O: Send,
O: Send,
impl<O> Sync for Id<O> where
O: Sync,
O: Sync,
impl<O> Unpin for Id<O> where
O: Unpin,
O: Unpin,
impl<O> UnwindSafe for Id<O> where
O: UnwindSafe,
O: UnwindSafe,
Blanket Implementations
impl<T> AdditiveMagma for T where
T: AbstractMagma<Additive>,
[src]
T: AbstractMagma<Additive>,
impl<T> AdditiveMonoid for T where
T: AbstractMonoid<Additive> + AdditiveSemigroup + Zero,
[src]
T: AbstractMonoid<Additive> + AdditiveSemigroup + Zero,
impl<T> AdditiveSemigroup for T where
T: AbstractSemigroup<Additive> + ClosedAdd<T> + AdditiveMagma,
[src]
T: AbstractSemigroup<Additive> + ClosedAdd<T> + AdditiveMagma,
impl<R, E> AffineTransformation<E> for R where
E: EuclideanSpace<RealField = R>,
R: RealField,
<E as EuclideanSpace>::Coordinates: ClosedMul<R>,
<E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
<E as EuclideanSpace>::Coordinates: ClosedNeg,
[src][+]
E: EuclideanSpace<RealField = R>,
R: RealField,
<E as EuclideanSpace>::Coordinates: ClosedMul<R>,
<E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
<E as EuclideanSpace>::Coordinates: ClosedNeg,
impl<T> Any for T where
T: 'static + ?Sized,
[src][+]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src][+]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src][+]
T: ?Sized,
impl<T, Right> ClosedAdd<Right> for T where
T: Add<Right, Output = T> + AddAssign<Right>,
[src]
T: Add<Right, Output = T> + AddAssign<Right>,
impl<T, Right> ClosedDiv<Right> for T where
T: Div<Right, Output = T> + DivAssign<Right>,
[src]
T: Div<Right, Output = T> + DivAssign<Right>,
impl<T, Right> ClosedMul<Right> for T where
T: Mul<Right, Output = T> + MulAssign<Right>,
[src]
T: Mul<Right, Output = T> + MulAssign<Right>,
impl<T> From<T> for T
[src][+]
impl<T, U> Into<U> for T where
U: From<T>,
[src][+]
U: From<T>,
impl<T> MultiplicativeGroup for T where
T: AbstractGroup<Multiplicative> + MultiplicativeLoop + MultiplicativeMonoid,
[src]
T: AbstractGroup<Multiplicative> + MultiplicativeLoop + MultiplicativeMonoid,
impl<T> MultiplicativeGroupAbelian for T where
T: AbstractGroupAbelian<Multiplicative> + MultiplicativeGroup,
[src]
T: AbstractGroupAbelian<Multiplicative> + MultiplicativeGroup,
impl<T> MultiplicativeLoop for T where
T: AbstractLoop<Multiplicative> + MultiplicativeQuasigroup + One,
[src]
T: AbstractLoop<Multiplicative> + MultiplicativeQuasigroup + One,
impl<T> MultiplicativeMagma for T where
T: AbstractMagma<Multiplicative>,
[src]
T: AbstractMagma<Multiplicative>,
impl<T> MultiplicativeMonoid for T where
T: AbstractMonoid<Multiplicative> + MultiplicativeSemigroup + One,
[src]
T: AbstractMonoid<Multiplicative> + MultiplicativeSemigroup + One,
impl<T> MultiplicativeQuasigroup for T where
T: AbstractQuasigroup<Multiplicative> + ClosedDiv<T> + MultiplicativeMagma,
[src]
T: AbstractQuasigroup<Multiplicative> + ClosedDiv<T> + MultiplicativeMagma,
impl<T> MultiplicativeSemigroup for T where
T: AbstractSemigroup<Multiplicative> + ClosedMul<T> + MultiplicativeMagma,
[src]
T: AbstractSemigroup<Multiplicative> + ClosedMul<T> + MultiplicativeMagma,
impl<R, E> ProjectiveTransformation<E> for R where
E: EuclideanSpace<RealField = R>,
R: RealField,
<E as EuclideanSpace>::Coordinates: ClosedMul<R>,
<E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
<E as EuclideanSpace>::Coordinates: ClosedNeg,
[src][+]
E: EuclideanSpace<RealField = R>,
R: RealField,
<E as EuclideanSpace>::Coordinates: ClosedMul<R>,
<E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
<E as EuclideanSpace>::Coordinates: ClosedNeg,
impl<T> Same<T> for T
[src]
type Output = T
Should always be Self
impl<R, E> Scaling<E> for R where
E: EuclideanSpace<RealField = R>,
R: RealField + SubsetOf<R>,
<E as EuclideanSpace>::Coordinates: ClosedMul<R>,
<E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
<E as EuclideanSpace>::Coordinates: ClosedNeg,
[src][+]
E: EuclideanSpace<RealField = R>,
R: RealField + SubsetOf<R>,
<E as EuclideanSpace>::Coordinates: ClosedMul<R>,
<E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
<E as EuclideanSpace>::Coordinates: ClosedNeg,
impl<R, E> Similarity<E> for R where
E: EuclideanSpace<RealField = R>,
R: RealField + SubsetOf<R>,
<E as EuclideanSpace>::Coordinates: ClosedMul<R>,
<E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
<E as EuclideanSpace>::Coordinates: ClosedNeg,
[src][+]
E: EuclideanSpace<RealField = R>,
R: RealField + SubsetOf<R>,
<E as EuclideanSpace>::Coordinates: ClosedMul<R>,
<E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
<E as EuclideanSpace>::Coordinates: ClosedNeg,
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
[src][+]
SS: SubsetOf<SP>,
impl<T> ToOwned for T where
T: Clone,
[src][+]
T: Clone,
impl<T> ToString for T where
T: Display + ?Sized,
[src][+]
T: Display + ?Sized,
impl<R, E> Transformation<E> for R where
E: EuclideanSpace<RealField = R>,
R: RealField,
<E as EuclideanSpace>::Coordinates: ClosedMul<R>,
<E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
<E as EuclideanSpace>::Coordinates: ClosedNeg,
[src][+]
E: EuclideanSpace<RealField = R>,
R: RealField,
<E as EuclideanSpace>::Coordinates: ClosedMul<R>,
<E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
<E as EuclideanSpace>::Coordinates: ClosedNeg,
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src][+]
U: Into<T>,
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src][+]
U: TryFrom<T>,
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
[src][+]
V: MultiLane<T>,