[−][src]Struct rand_distr::Normal
The normal distribution N(mean, std_dev**2)
.
This uses the ZIGNOR variant of the Ziggurat method, see StandardNormal
for more details.
Note that StandardNormal
is an optimised implementation for mean 0, and
standard deviation 1.
Example
use rand_distr::{Normal, Distribution}; // mean 2, standard deviation 3 let normal = Normal::new(2.0, 3.0).unwrap(); let v = normal.sample(&mut rand::thread_rng()); println!("{} is from a N(2, 9) distribution", v)
Methods
impl<N: Float> Normal<N> where
StandardNormal: Distribution<N>,
[src][−]
StandardNormal: Distribution<N>,
pub fn new(mean: N, std_dev: N) -> Result<Normal<N>, Error>
[src][−]
Construct a new Normal
distribution with the given mean and
standard deviation.
Trait Implementations
impl<N: Clone> Clone for Normal<N>
[src][+]
impl<N: Copy> Copy for Normal<N>
[src]
impl<N: Debug> Debug for Normal<N>
[src][+]
impl<N: Float> Distribution<N> for Normal<N> where
StandardNormal: Distribution<N>,
[src][+]
StandardNormal: Distribution<N>,
Auto Trait Implementations
impl<N> RefUnwindSafe for Normal<N> where
N: RefUnwindSafe,
N: RefUnwindSafe,
impl<N> Send for Normal<N> where
N: Send,
N: Send,
impl<N> Sync for Normal<N> where
N: Sync,
N: Sync,
impl<N> Unpin for Normal<N> where
N: Unpin,
N: Unpin,
impl<N> UnwindSafe for Normal<N> where
N: UnwindSafe,
N: UnwindSafe,
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src][+]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src][+]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src][+]
T: ?Sized,
impl<T> From<T> for T
[src][+]
impl<T, U> Into<U> for T where
U: From<T>,
[src][+]
U: From<T>,
impl<T> ToOwned for T where
T: Clone,
[src][+]
T: Clone,
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src][+]
U: Into<T>,
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src][+]
U: TryFrom<T>,
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
[src][+]
V: MultiLane<T>,